Conservation

ENSR®

LIMNOLOGICAL INVESTIGATION
OF STAFFORD POND
TIVERTON, RHODE ISLAND

LIMNOLOGICAL INVESTIGATION OF STAFFORD POND TIVERTON, RHODE ISLAND

Submitted to:

The Rhode Island Department of Environmental Management 235 Promenade Street Providence, RI 02908

16en Wagner 3-2002 Ct. 860 129-5323 4722 MA 978 589-3000

Submitted by: Fugro East, Inc. 6 Maple Street orthborough, MA 01532

March 1997

TABLE OF CONTENTS

Executive Summary	l-l
Introduction	2-1
Historical Data Review	2-1
General Approach and Methods	3-1
Watershed Features	3-1
Pond Features	3-1
Physical Characteristics	3-1
Chemical Characteristics	3-3
Biological Characteristics	3-5
Pond Use Evaluation	3-7
Diagnostic Assessment	4-1
Watershed Features	4-1
Watershed Delineation	4-1
Drainage Pattern	4-1
Geology	4-1
Soils	4-1
Land Use	4-4
Pond Features	4-7
Physical Characteristics	4-/
Morphometry	4-/
Sediments	4-/
Hydrology	4-/
Hydrologic Loading	4-11
Chemical Characteristics	4-18
Routine Water Chemistry	4-18
Supplemental Water Chemistry	4-29
Storm Water Chemistry	4-34
Ground Water Chemistry	/ د-4
Sediment Chemistry	4-39
Fish Tissue Analysis	4-41
Data Quality Investigations	4-41
Nitrogen and Phosphorus Loading	4-41
Biological Characteristics	4-52
Fecal Bacteria	4-52
Phytoplankton	4-5/
Zooplankton	4-67
Aquatic Vascular Plants	4-67
Fish	4-/1
Waterfowl	4-71
Aquatic Invertebrates	4-77
Amphibians and Reptiles	4-77

Pond Use Evaluation	4-78
Water Supply and Withdrawal Impacts	4-78
Boating and Watercraft Impacts	
Fishing and Fishery Considerations	4-83
Swimming and Related Contact Recreation	4-83
Other Uses	
Diagnostic Summary	
Management Feasibility Evaluation	
Management Objectives	
Reduce Algal Abundance	
Maximize Raw Water Quality for Water Supply	
Minimize Water Level Fluctuations	
Improve Recreational Utility	
Minimize User Conflicts	
Options for Controlling Algae	
Options for Maximizing Raw Water Quality	
Options for Minimizing Water Level Fluctuations	
Options for Improving Recreational Utility	
Options for Minimizing User Conflicts	
Recommended Management Program	
Anticipated Expense	
Anticipated Schedule	
Management Summary	
Literature Cited	6-1
Appendices	
A: Collected Data	
B: Calculations	B-1

.

.

FIGURES

1.	Locus Map for Stafford Pond	2-2
	Shoreline Segments for the Seepage Survey, Well Survey, and Ground Water	
	Quality Monitoring Investigation at Stafford Pond (1996)	3-2
3.	Water Quality Monitoring Locations at Stafford Pond (1996)	3-4
4.	Sediment Sampling Locations at Stafford Pond (1996)	3-6
5.	Fish Survey Sampling Locations at Stafford Pond (1996)	3-8
6.	Stafford Pond Watershed	4-2
7.	Approximate Distributions of Soil Types in the Stafford Pond Watershed	4-3
8.	Land Use in the Stafford Pond Watershed	4-5
	Bathymetric Map of Stafford Pond	
10a-n	Dissolved Oxygen/Temperature Profiles Recorded at Stafford Pond (SP1)	4-21
11a.	Total Phosphorus vs. Chlorophyll a	4-53
11b.	Total Phosphorus vs. Secchi Disk Transparency	4-53
12a.	Phytoplankton Cells/Ml in Stafford Pond (1996)	4-61
12h	Phytoplankton µg/L in Stafford Pond (1996)	4-65
13a.	Aquatic Macrophyte Community Composition in Stafford Pond (1996)	4-69
13b.	Density of Aquatic Macrophyte Assemblages in Stafford Pond (1996)	4-70

TABLES

1.	Precipitation Data for the Stafford Pond Region	4-9
2.	Estimates of Flow Recorded at Stafford Pond (1996)	. 4-10
3.	Results of the Seepage Survey Conducted at Stafford Pond (1996)	4-12
4.	Results of the Ground Water Well Survey Conducted at Stafford Pond (1996)	4-13
5.	Withdrawals from the Stone Bridge Fire District Drinking Water Plant (1996)	4-14
6.	Estimated Hydrologic Loading to Stafford Pond	4-15
7.	Generalized Seasonal Hydrologic Budget for Stafford Pond	4-17
8,	Results of Routine Water Quality Monitoring at Stafford Pond (1996)	4-19
9.	Results of Supplemental Water Quality Monitoring at Stafford Pond (1996)	4 - 30
10.	Results of Storm Water Monitoring at Stafford Pond (1996)	4-35
11.	Results of Ground Water Monitoring at Stafford Pond (1996)	4-38
12.	Results of Sediment Sampling at Stafford Pond (1996)	4-40
13.	Results of Fish Tissue Analysis at Stafford Pond (1996)	4-42
14.	Nitrogen and Phosphorus Loads Estimated from Existing Data	4-43
15a.	Prediction of Phosphorus and Nitrogen Loads and In-Lake Concentrations from	
Ja.	Empirical Models and Existing Data: Terms	4-45
l 5b.	The second secon	
100.	Empirical Models and Existing Data: Models	4-46
16.	Loading Summary from Watershed Export Model	4-49
10. 17a.	In-Lake Models for Predicting Concentrations: Current Conditions, Terms	4-50
17b.	In-Lake Models for Predicting Concentrations: Current Conditions, Models	4-51
18.	Results of Fecal Coliform Monitoring in Surface Waters at Stafford Pond (1996).	4-54
19.		
1).	Stafford Pond (1996)	4-55
20.	n i c c 10 mile I and and	
20.	at Stafford Pond (1996)	4-56
21a.	- 1 0 0 10 1/100C)	4-58
21b.	Phytoplankton Biomass in Stafford Pond (1996)	4-62
22.	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	4-68
23a.	"	4-72
23b.		4-73
23c	Fish Collected in Gill-Net Set #3	4-74
23d.	Fish Collected in Gill-Net Set #5	4-75
23e.	Fish Collected in Seine-Haul B	4-75
24.		
2	Stafford Pond (1996)	4-76
25a.		
	Associated Biota	4-79
25h	Characteristics of Lake Ecosystems that Influence Ecological Impact	
	by Motorized Watercraft	4-80
25c.	Approximate Numbers and Types of Boats Recorded on Sampling Visits	
,	to Stafford Pond (1996)	4-82

EXECUTIVE SUMMARY -

INTRODUCTION

Stafford Pond is located in the northeast corner of Tiverton, Rhode Island and lies within the Narragansett Bay drainage basin (Figure 1). The pond is approximately 487 acres in size. Stafford Pond is categorized as a Class B waterbody by the State of Rhode Island (RIDEM 1988). Designated uses for Class B waterbodies include public water supply with appropriate treatment, agricultural uses, primary contact recreation, and fish/wildlife habitat. The Stone Bridge Fire District of Tiverton, Rhode Island, maintains a water treatment facility on the southwest shore of the pond, and supplies drinking water to nearly 1000 customers. Potable water from the Stone Bridge Fire District treatment facility is supplied to the Town of Portsmouth, the Stone Bridge section of Tiverton, the Tiverton Water Authority, and the North Tiverton Water Authority. The pond supports a viable put and take trout fishery and a self sustaining warmwater fishery, including one of the state's few remaining populations of smallmouth bass. A public boat launch is located on the eastern shoreline.

Concerned over a perceived decline in water quality, the Rhode Island Department of Environmental Management (DEM) initiated a year long study of Stafford Pond beginning in January of 1996. A grant provided by the Rhode Island DEM was used to hire Fugro East, Inc. (now ENSR) for the purpose of conducting a limnological investigation of the pond. This investigation included an evaluation of Stafford Pond and its drainage basin. Water quality is important to the uses of Stafford Pond, which include public drinking water supply, recreational fishing, boating (motorized and non-motorized), limited swimming and other contact recreation, and as an occasional runway area for seaplanes. The goal of this study was not to prioritize pond uses, but to provide scientific information that should facilitate informed decision making.

HISTORICAL DATA REVIEW

Several investigations of Stafford Pond and its drainage basin have been conducted over the past few decades. The earliest reported water quality investigation was conducted in July of 1966 (Guthrie and Stolgitis 1990). Only a few parameters were analyzed. Temperature and dissolved oxygen profiles revealed isothermal conditions and sufficient levels of dissolved oxygen throughout the entire water column. Total alkalinity and pH were approximately 1.0 mg/L and 7.0 SU, respectively.

In May of 1967, a preliminary engineering report on water supply and distribution was presented to the Town of Tiverton (Fenton G. Keyes 1967). Results of this investigation revealed that Stafford Pond was an excellent source of drinking water, both from an engineering and economic standpoint. It was estimated that the dependable yield of the pond ranged from 1.5 to 2.0 million gallons per day. A follow-up report presented to the Town of Tiverton in April of 1977 indicated that Stafford Pond was still the logical choice as a future water supply for a "Town-Wide Water System".

The earliest reported instance of poor water quality at Stafford Pond was in 1972, when algal blooms in the pond decreased output capacity at the water filtration plant (LEA 1974). Results of sampling conducted in 1989 indicated that the pond was eutrophic (RIDEM 1989). This classification was based upon chlorophyll <u>a</u> and Secchi transparency values of 15.8 ug/L and 1.7 m, respectively.

As a result of concern for the future of the pond, a Water Quality Protection Plan was generated during the early 1990's (Whitman and Howard 1992). The plan revealed six primary sources of potential contamination. These sources included: 1) a large number of substandard cesspools/septic systems in close proximity to the pond, 2) a dairy farm located northeast of the pond, 3) above ground fuel and oil tanks located within 100 feet of the pond, 4) storage of vehicles and construction equipment within the watershed, 5) storm water runoff, and 6) recreational boating and use by seaplanes.

Volunteer monitoring conducted during 1992, 1993, and 1994 revealed that the pond was in the mesotrophic range (Green and Herron 1995). However, results indicated a general decline in water quality over the three year period; Secchi depths decreased and concentrations of chlorophyll <u>a</u> and total phosphorus increased.

A general decline in water quality has also been noted by employees of the Stone Bridge Fire District water treatment facility. Prior to 1991, algal blooms were rather sporadic. During the past five years, the frequency and intensity of algal blooms has increased. Three algal taxa have been responsible for most of the bloom conditions. These taxa include *Anabaena*, *Aphanizomenon*, and *Asterionella* (Sumner 1996). The first two are Cyanophytes (bluegreen algae), while the last is a Bacillariophyte (diatom).

GENERAL APPROACH AND METHODS

WATERSHED FEATURES

Field investigations and a United States Geological Survey (USGS) 7.5 minute topographic map were used to delineate the watershed draining to Stafford Pond. Drainage patterns were used to further divide the watershed into sub-basins. Information regarding watershed geology was obtained from Fenton G. Keyes (1967). Major soil types in the Stafford Pond watershed were determined from the Soil Survey of Rhode Island (Rector 1981). Major land use categories within the watershed were identified from field investigations, USGS 7.5 minute topographic maps, and information provided by the Rhode Island Geographic Information System.

POND FEATURES

PHYSICAL CHARACTERISTICS

A USGS 7.5 minute topographic map was used to calculate total pond area. A bathymetric map obtained from Guthrie and Stolgitis (1990) was verified in the field and used to calculate average water depth, maximum water depth, and total pond volume. Benthic substrate composition was qualitatively evaluated in shallow areas of the pond (<15 ft water depth) by probing the pond bottom with a metal rod. The approximate volume of soft sediment in deep water areas of the pond was estimated by assuming that an average of one foot of soft sediment was present in water depths greater than 15 feet. Tributaries, storm water pipes, and outlets were identified from field investigations and review of USGS 7.5 minute topographic maps. Measurements of base-flow were recorded on most sampling visits to the pond by utilizing the float method as described by Dunne and Leopold (1978).

A seepage survey was conducted in June along four shoreline segments to document the role of ground water on pond hydrology (Figure 2). Shoreline segments were selected to be representative of the pond as a whole. Seepage quantity was estimated by installing two seepage meters per defined shoreline segment and measuring the volumetric change in the attached bag (Mitchell et al. 1988).

Additionally, two shallow ground water wells were installed at each of the aforementioned shoreline segments to further document the role of ground water on pond hydrology. Groundwater wells were monitored from April through October. For each shoreline segment, one well was established on-shore and one well was established in the shallow littoral zone of the pond. Ground water flow was estimated by utilizing the Darcy equation: Q= CIA, where Q= discharge, C= hydraulic conductivity, I= hydraulic gradient, and A= seepage area. Hydraulic conductivity was estimated by reviewing infiltration rates for soil types present in the Stafford Pond watershed. The hydraulic gradient or slope of the ground water table was estimated by comparing on-shore and in-pond ground water elevations. Seepage area was estimated by dividing the pond into four equi-distant quadrants and assuming that seepage was minimal or non-existent beyond a known water depth (15 ft.), as mucky bottom sediments in deep water areas of the pond reduce or even eliminate ground water movement.

Hydrologic loading was determined using actual and estimated values based upon watershed and pond features. Hydrologic inputs were divided into four categories: direct precipitation, ground water inseepage, surface water-base flow, and surface water-storm flow. Annual precipitation was estimated by averaging 30-year normal precipitation values for Providence and Newport, Rhode Island. Direct precipitation input was estimated by multiplying annual precipitation by the total pond area. Ground water inseepage was estimated by time weighting and averaging all positive monthly well measurements. Surface water base-flow was estimated by reviewing actual flow measurements and adjusting values to fit average precipitation data and expected watershed water yield (Sopper and Lull 1970). Surface water storm-flow was estimated per subbasin by multiplying average annual precipitation by selected runoff coefficients relating to land use.

Hydrologic outputs were also divided into four categories: evaporation, ground water outseepage, withdrawal (water treatment facility), and surface outflow. Evaporation was estimated by multiplying direct annual precipitation by 2/3. Ground water outseepage was estimated by time weighting and averaging all negative monthly well measurements. Average annual withdrawal from the drinking water treatment facility was estimated by reviewing pumping records from January through November of 1996. Surface outflow was assumed to make up the remainder, as corroborated by field measurements. Total inflow and morphometric features of the pond were used to estimate flushing rate, detention time, and response time.

A seasonal hydrologic budget was constructed based on the relationships established by Sopper and Lull (1970) for southern New England and the total inputs and outputs as derived above.

CHEMICAL CHARACTERISTICS

Water quality monitoring locations are presented in Figure 3. Routine monitoring was conducted from February through October and included sampling at stations SP1-7 and SP11-12. The following parameters were analyzed: dissolved oxygen, temperature, pH, total alkalinity, total hardness, conductivity, turbidity, Secchi disk transparency, chlorophyll a, nitrite+nitrate nitrogen, ammonium nitrogen, inorganic nitrogen, total Kjeldahl nitrogen, total nitrogen, total phosphorus, and dissolved phosphorus.

Supplemental monitoring was conducted at four locations (SP1a, SP1e, SP3, SP4) during July and September. The following parameters were analyzed: cadmium, lead, copper, aluminum, calcium, magnesium, sodium, chloride, iron, manganese, total petroleum hydrocarbons, DDT, PCB's, and polynuclear aromatic hydrocarbons. Additionally, a single round of sampling was conducted in October at SP1a to determine concentrations of cadmium, lead, and mercury using very low detection limits.

Three rounds of storm water monitoring were conducted at up to five locations over the course of the study. Storm water monitoring locations included SP5b, SP6, SP8, SP9, and SP10. Routine monitoring parameters were evaluated during each round of sampling and supplemental monitoring parameters were evaluated during a single sampling conducted in September.

Methods

A ground water quality monitoring investigation was conducted during June and September along four shoreline segments (Figure 2). Shoreline segments were consistent with those selected for the seepage and well surveys. A littoral interstitial porewater (LIP) sampler was used to collect three samples from each shoreline segment which were later composited into a single sample per segment. Parameters evaluated included nitrite+nitrate nitrogen, ammonium nitrogen, dissolved phosphorus, dissolved iron, and dissolved manganese.

Benthic sediments were collected at three in-pond locations with the aid of an Ekman dredge (Figure 4). Parameters evaluated included grain size analysis, total organic carbon, solids content, total phosphorus, total Kjeldahl nitrogen, total metals (Cd, Cu, Pb, Al, Fe, Mn, Ca), total petroleum hydrocarbons, DDT, PCB's, and polynuclear aromatic hydrocarbons.

Edible portions from three white perch (Morone americana) were composited and analyzed for cadmium, lead, mercury, PCB's, and polynuclear aromatic hydrocarbons. Fish ranged in size from 11 to 12 inches total length.

Duplicate water quality samples from one station were analyzed for selected parameters on multiple sampling dates. The purpose of this project component was to quantify variability as a function of sampling and/or lab error. Additionally, phosphorus analysis was conducted at two separate labs on several dates to provide cross-lab comparisons.

Three separate approaches were used to estimate nitrogen and phosphorus loading to Stafford Pond. In the first approach, existing data for water flows and nutrient concentrations were used to calculate approximate inputs from sources for which data were available, and to derive rough estimates for unsampled sources through comparison. The second approach involved empirical models utilizing hydrologic lake features and known in-lake concentrations to calculate the load necessary to generate those concentrations. The third approach employed export coefficients for pollutant loading from land use types, tempered by known attenuation mechanisms, specific watershed features, and existing data. This third approach also results in a model which can be used to predict the impact of various management actions on in-lake water quality.

Internal load, a potentially important feature of any nutrient budget, was evaluated as a function of the average difference between surficial and bottom concentrations for phosphorus and nitrogen, and as the change in concentration over the summer period of lowest external inputs and maximum likely internal loading. Inputs from other sources, such as birds, were quantified as a function of literature values and field observation.

BIOLOGICAL CHARACTERISTICS

Water samples collected during routine and storm water monitoring were analyzed for fecal coliform and fecal streptococcus bacteria. Phytoplankton were collected every month from February through October at sampling locations SP1a and SP4. Samples were preserved with Lugol's solution and identified in the laboratory under phase optics at 400x magnification. Cell counts were converted to biomass based on size and species-specific biovolumes using a specific gravity of 1.0. Chlorophyll a was measured spectrophotometrically after extraction in 90% acetone, and calculated using the monochromatic equation. Zooplankton were collected during

spring, summer, and late summer at a single sampling location (SP1). Samples were preserved with formalin and identified in the laboratory under brightfield optics at 100x magnification. Organism counts were converted to biomass based on size and species-specific relationships.

The aquatic vascular plant community of Stafford Pond was surveyed in June and August. During the June survey, a boat and diver equipped with snorkeling gear were used to map species composition and plant density throughout the pond. The August survey was less intense and basically consisted of cruising the shoreline in a boat and documenting any large changes in the plant community.

The fish community of Stafford Pond was determined by reviewing information provided by the Rhode Island Department of Environmental Management, Division of Fish and Wildlife. Additionally, a seining and gill-netting survey was conducted during the month of October as a supplement to this information. Seining was conducted in shallow near-shore areas of the pond and gill-nets were set throughout the pond (Figure 5). Fish were identified, examined for external anomalies, enumerated, measured (millimeters), weighed (grams), and released.

Approximate numbers of waterfowl were recorded on most sampling visits to the pond. Although aquatic invertebrate, amphibian, and reptile communities were not evaluated in detail as part of this investigation, a brief write-up on expected community composition is presented in the results section of this report.

POND USE EVALUATION

Existing pond uses, including water supply, boating, fishing, swimming/contact recreation, and other uses were evaluated largely through field observation and discussions with lake users. An effort was made to record the number and types of boats on the pond, and any other forms of recreation observed during visits. However, we were not present on weekends, when alternative use patterns would be most likely to occur.

DIAGNOSTIC ASSESSMENT

WATERSHED FEATURES

WATERSHED DELINEATION

The watershed draining to Stafford Pond is approximately 947 acres in size (Figure 6). Six subbasins were designated and ranged in size from 81 to 308 acres. The watershed:lake area ratio is small (<2:1), indicating high potential for successful management.

DRAINAGE PATTERN

Two tributaries and two storm water pipes discharge into Stafford Pond (Figure 3). The northern tributary drains sub-basin 5, and the western tributary drains sub-basin 6. Both storm water pipes drain sections of sub-basin 2. The northern storm water pipe discharges directly into Stafford Pond, and is believed to drain sections of Old Stafford Road. The southern storm water pipe discharges into a forested area within 200 feet of the pond, and is believed to drain sections of Route 81. Drainage in the remaining sub-basins is a combination of sheet flow and ground water infiltration.

GEOLOGY

The available information on the geology of the Eastern Bay Area of the State of Rhode Island indicates that the Stafford Pond watershed is primarily underlain by a thin mantle of till. Till is a compact, unstratified, poorly sorted mixture of clay, silt, sand, gravel, and boulders, deposited by glacial activity. The till usually forms a thin discontinuous mantle over the bedrock with frequent outcroppings of the bedrock being present. Because of its clayey character, till generally has a relatively low infiltration capacity, although some soils derived from till can be well drained.

SOILS

Approximate distributions of soil types in the Stafford Pond watershed are presented in Figure 7. The Stafford Pond watershed is primarily composed of well drained (Broadbrook, Newport, Canton and Charlton) and moderately well drained (Pittstown, Woodbridge, Udorthent-Urban Land Complex) soils. However, poorly drained (Ridgebury, Stissing) and very poorly drained (Adrian, Mansfield) soils are present throughout the watershed as well.

Broadbrook soils compose a majority of the western shoreline of the pond and eastern perimeter of the watershed. Runoff rates range from slow to moderate. Runoff rates indicate the intensity of overland flow in response to precipitation. Broadbrook soils are generally suitable for community development. However, on-site sewage disposal systems need special design and installation to prevent effluent from seeping to the surface as permeability of the substratum is slow or very slow.

Figure 6. Stafford Pond Watershed.

Newport soils are found throughout the western and northern portions of the watershed. Runoff rates range from medium to rapid. These soils are generally suitable for community development and have the same constraints as the Broadbrook soils with regard to on-site sewage disposal systems.

Canton and Charlton soils are located in the northern and southeastern portions of the watershed. Runoff rates are typically moderate. These soils are suitable for community development but are limited by one or more factors including stoniness. On-site sewage disposal systems need special design and installation to prevent effluent from seeping to the surface.

Pittstown soils comprise most of the eastern shoreline where nearly all of the lakefront development has occurred. Runoff rates range from slow to moderate. These soils are generally suitable for community development, but are limited by a seasonal high water table and slow permeability of the substratum. Special design considerations are necessary for on-site sewage disposal.

Woodbridge soils are present in an isolated patch in the southern portion of the watershed at the crest of an upland hill. Runoff rates are typically slow. These soils are generally suitable for community development and have the same constraints as the Pittstown soils with regard to onsite sewage disposal systems.

Several small portions of Udorthent-Urban Land Complex are found in the southern portion of the watershed. This soil category is usually associated with disturbed soils that have been covered by buildings or pavement.

The remaining soil groups (Ridgebury, Stissing, Adrian, and Mansfield) are located throughout the watershed in isolated pockets and typically have slow or very slow runoff rates. These soils are generally not recommended for community development or on-site sewage disposal.

LAND USE

Forested and residential land use categories cover the greatest area in the Stafford Pond watershed (Figure 8). Sub-basin 1, covering 95 acres, is primarily forested and contains only a few buildings, including the Stone Bridge Fire District water treatment facility. The water treatment facility withdraws water from Stafford Pond on a daily basis via two sub-surface intakes. Additionally, treated pond water is used to backwash filters at least once every two days, and this water is eventually discharged back into the pond after settling of suspended solids. The normal mode of operation is to deliver post-backwash water to a pair of sequential settling tanks prior to discharge into the pond. Discharge from the settling tank occurs via two 4 inch diameter pipes. In circumstances where the settling tank is full, backwash can be discharged directly to the pond via a 12 inch diameter pipe.

Sub-basin 2, covering 198 acres, was the most heavily developed area in the entire watershed and includes most of the residential properties and some commercial properties. This sub-basin is bounded by Stafford Pond to the west and Route 81 to the east. Road runoff from this sub-basin is discharged to Stafford Pond via two stormwater pipes (Figure 3). Sub-basin 3, occupying 81

N Stafford Road 9 Bulgarmarsh Road

Figure 8. Land Use in the Stafford Pond Watershed.

1988 Land Use Categories

- Residential
- Commercial
- Commercial/Industrial Industrial and Mixed
- Transportation
- Water and Sewage Treatment
- Waste Disposal
- Recreation
- Agriculture

 - Forested
- Water and Wetlands
- Mixed Transitional and Vacant Land
- Stafford Pond Watershed Boundaries
 - Sub-Watersheds 1-6

Data supplied by the Rhode Island Geographic Information System (RIGIS). Land use data interpreted from 1988 black and white serial photography. Matershed boundary delineated by Fugro Bast, Inc. 1996.

1 inch = 1,937 feet Scale 1:23,249

Rhode Island Department of Environmental Management L. Carlson 1997

Board Of Governors For Higher Education All Rights Reserved

acres, is a mix of residential, agricultural, wetland, and forested land uses. A number of summer cottages and year-round residences in this sub-basin are located in close proximity to the pond. Furthermore, many of these residences utilize cesspools or septic systems which appear to be at a low elevation relative to the ground water table. Sub-basin 4, with an area of 308 acres, is probably the least developed area in the entire watershed, with wetland and forested land use categories predominating.

Sub-basin 5, covering 86 acres, is a mix of residential, commercial, agricultural, wetland, and forested land use categories. An active dairy farm is present in this portion of the watershed. The farm encompasses approximately 55 acres, only half of which is actually frequented by cattle. The herd is comprised of approximately 120 milking cows and 40-60 dry cows and heffers. Dry cows and heffers are moved to off-site grazing areas from April through November. Herd size has not changed appreciably over the last decade (Pindell 1996). The northern tributary to Stafford Pond flows through the dairy farm (Figure 3). This tributary originates in a wetland area just north of Eagleville Road. From this point, the stream flows in a southerly direction, receiving stormwater from Eagleville Road and discharging into a small pond located at the north end of the dairy farm. The stream channel upstream of the pond is usually dry during dry weather. This pond also receives drainage from Washington Avenue during wet weather. The northern area of the dairy farm is well vegetated and is usually not frequented by cattle. The outlet from the pond combines with groundwater breakout from the west and flows through the southern section of the dairy farm and into Stafford Pond. The southern area of the dairy farm is frequented by cattle, and unvegetated hillsides drain directly into the northern tributary.

Sub-basin 6, with an area of 179 acres, is relatively undeveloped with forested land use predominating. Two significant developed properties are present in this sub-basin, near its upgradient limit: the Tiverton High School and the Tiverton Middle School. This sub-basin is drained by the western tributary to Stafford Pond (Figure 3). This tributary originates near route 177 and meanders to the pond through a series of wetlands. Runoff from the High School parking lot and possibly leachate from the waste water disposal system appear to reach this tributary.

POND FEATURES

PHYSICAL CHARACTERISTICS

Morphometry

Stafford Pond is approximately 487 acres in size. Average and maximum water depths were 13 and 25 feet, respectively (Figure 9). Pond volume was calculated at approximately 271,800,000 ft³ or 7,700,000 m³ or 2.04 billion gallons. The pond has only one definable basin, with the deepest area slightly northeast of center. Underwater slopes are moderate along east and west shoreline areas, minimizing soft sediment accumulations. Slopes are more gradual to the north and south.

Sediments

Benthic substrates were comprised mostly of boulder, cobble, gravel, and sand in water depths <15 feet, although some sandy muck was encountered in northern and southern areas of lesser underwater bottom slope. Mucky bottom sediments were more prevalent in the deeper areas of the pond. Although quantitative data was not collected for soft sediment volume at depths >15 ft, we would conservatively estimate that nearly 10 million cubic feet (370,000 cy) of soft sediment are present in water depths >15 feet. There is very little soft sediment at water depths <15 ft; thin layers of muck are found in some areas, and a substantial (10,000-15,000 cy) but isolated deposit is located near the mouth of the northern tributary.

Hydrology

Precipitation drives the hydrology of most aquatic systems in the northeastern United States. Data for weather stations in Providence and Newport, RI (Table 1) suggest long-term average annual precipitation of about 45 inches. Providence records for 1996 suggest a near average year, while records for Newport suggest much higher than average precipitation. Precipitation for 1995 was far below normal for each station. The distribution of precipitation tends to be fairly uniform over the months of the year on a long-term average basis, but any individual year is likely to have substantial variability among monthly values.

Two tributaries and two storm water pipes discharge to Stafford Pond. An outlet structure located along the northern perimeter of the pond controls the outward flow of pond water into Sucker Brook (Figure 3). This rectangular weir is maintained by the Fall River Water Department. However, water rights are actually owned by the Watuppa Reservoir Company. The management goal concerning the outlet structure has generally been to maintain full capacity in the pond, with the ability to release water during drought conditions.

Measurements of surface water flow are presented in Table 2. Observed tributary flows ranged from 0 to 2.6 cfs and outlet flows ranged from 0 to 10.7 cfs. As expected, the lowest flows were recorded during July, August, and early September. It is noted here that average estimates of flow were elevated, as precipitation during 1996 was higher than normal and measurements were occasionally recorded after recent precipitation events.

All Contours in Feet SOURCE: Guthrie & Stolgitis, 1990

Client:	Rhode Island Department	
C	f Environmental Management	<u> </u>

Bathymetric Map Of Stafford Pond

Job No. 16-16-9144 June, 1996

Figure 9

Table 1. Precipitation Data for the Stafford Pond Region.

	30	30 year average (in.)	n.)		1996 (in.)	
Month	Providence	Newport	Average	Providence	Newport	Average
Fan	3.88	3.83	3.86	5.02	5.47	5.25
Roh	3.61	3,63	3.62	2.19	4.13	3.16
Mar	4.05	4.14	4.10	2.71	2.73	2.72
Apr	4.11	4.15	4.13	4.88	6.31	5.60
May	3.76	3.68	3.72	2.44	2.97	2.71
n I	3,33	3.14	3.24	2.17	2.29	2.23
	3.18	2.85	3.02	5.49	3.61	4.55
Ano	3.63	3,31	3.47	2.19	3.71	2.95
Sen	3 48	3.47	3.48	5.75	7.94	6.85
}	3 69	3.52	3.61	6.23	7.50	6.87
i è	4.43	4.71	4.57	2.23	4.71*	3.47
Dec	4.38	4.38	4.38	4.38*	4.38*	4.38
Total	45 53	44.81	45.17	45.68	55.75	50.72
		1995 data (for comparison	rison)	38.58	38.12	38,35

*Long Term average (1996 data unavailable).

Data provided by the Northeast Regional Climate Center - Ithaca, N.Y.

Table 2. Estimates of Flow Recorded at Stafford Pond (1996).

Sampling	-	Flow (cfs)	
Date	SP5b	SP6	SP7
Dry Weather:			
21-Feb	2.4	2.6	10.7
19-Mar	1.5	1.1	8.8
14-May	0.3	0.6	9.4
29-May	0.3	1.3	6.1
10-Jun	0.1	0.3	3.6
27-Jun	< 0.01	< 0.01	0.9
17-Jul	< 0.01	< 0.01	< 0.01
30-Jul	< 0.01	0	0
8-Aug	< 0.01	0	0
22-Aug	0	0	0
5-Sep	0	0	0
30-Sep	0.03	0.4	1.5
29-Oct	0.5	1.4	10.3
Mean (time weighted)	0.5	0.6	4.7
Minimum	0	0	C
Maximum	2.4	2,6	10.7

A map of shoreline segments for the ground water seepage and well surveys is presented in Figure 2. Results of the seepage survey indicate minimal ground water exchange at all four shoreline segments (Table 3). Seepage in excess of 5 L/m²/day would generally be considered significant. Positive values represent inseepage and negative values represent outseepage. Conditions for direct measurement of seepage were poor, given the rocky nature of the substrate and underlying till soils. Ground water inputs are likely to be patchy, as with spring activity; this makes assessment with a few conveniently placed seepage meters difficult and less meaningful. the low seepage rates, however, do suggest slow ground water movement in this system.

As an alternative, Darcy's equation was applied to each of the four shoreline segments, using an area equivalent to the shoreline length multiplied by the distance out from shore to a water depth of 15 ft (where significant muck deposits begin and impede seepage). Hydraulic conductivity was estimated from soils data, while the ground water table slope was measured as the gradient between wells in each pair on routine sampling dates. Seepage rates could then be calculated for the study period.

Results of the ground water well survey (Table 4) indicate that ground water exchange in the form of inseepage was relatively low along the southwest shoreline segment, and very low along the remaining segments. On an annual basis, ground water flow will result in a net gain to the pond; more ground water will flow into the pond than out of it. However, both total inflow and outflow via ground water appear very limited in this system. Most inseepage will normally occur along the pond edge, the zone of least resistance, but this system is prone to distinct spring activity and it would not be surprising to find scattered areas of higher inseepage.

According to 1996 data (Table 5), the Stone Bridge Fire District withdrew an average of 992,154 gallons of pond water per day (Sumner 1996). Most of this water was treated and delivered to nearly 1,000 customers. Some of this water (155,425 gal/day) was used as filter backwash and was eventually discharged back into the pond. Therefore, the average net withdrawal for 1996 was 836,729 gal/day. However, the pattern varies seasonally with greatest withdrawals during summer. Maximum net withdrawal was 1,020,258 gal/day during July of 1996.

Hydrologic Loading

Estimated hydrologic loading to Stafford Pond (Table 6) is derived from a combination of direct precipitation, ground water inseepage, surface water base-flow, and surface water storm-flow. Average annual inflow was estimated at 5.5 cfs, assuming normal precipitation conditions. Direct precipitation was the largest of all inputs with a contribution of 2.5 cfs or 46% of the total water input. This is unusual for water supply lakes in New England and is directly related to the small watershed:lake area ratio. In New England, most inflow is typically generated in the watershed as runoff or ground water breakout into streams. Where the watershed is small, however, such sources are limited. This in turn limits the amount of water which can be withdrawn without adversely impacting lake water level.

Table 3. Results of the Seepage Survey Conducted at Stafford Pond (1996).

Station	Seepage Time hours	Volume Change liters	Seepage L/m2/day
NE1	5.0	-0.08	-1.5
NE2	5.0	0.05	1.0
NW1	4.8	-0.03	-0.6
NW2	4.8	0.04	0.8
SE1	ND	ND	ND
SE2	4.7	0.08	1.6
SW1	4.6	0.02	0.4
SW2	4.6	-0.05	-1.0

Sampling conducted in June of 1996.

ND= No Data.

Table 4. Results of the Ground Water Well Survey Conducted at Stafford Pond (1996).

	F	low per Lake S	egment (cfs)	
Date	Northeast	Northwest	Southeast	Southwest
17-Apr	0.04	-0.92	0.48	1.57
14-May	0.03	0.33	-0.11	1.58
29-May	0.03	0,25	-0.06	0.63
10-Jun	0.02	0.15	-0.06	0.53
27 - Jun	-0.02	0.02	-0.03	<0.50
17-Jul	-0.43	0.09	0.02	< 0.50
30-Jul	-0.02	-0.07	- 0.09	< 0.50
8-Aug	0.03	0.02	-0.04	< 0.50
22-Aug	0.00	- 0.09	-0.05	<0.50
5-Sep	0.13	0.12	0.09	< 0.50
28-Oct	0.09	0.54	-0.16	1.41

Estimates were based upon Q=CIA

Q= Discharge

C= Hydraulic conductivity (0.5 in/hr)

I= Slope based on well pair readings

A= Seepage area terminated at water depth of 15 ft.

Table 5. Withdrawals from the Stone Bridge Fire District Drinking Water Plant (1996).

	# dowe in	Monthly Totals	Totals	Raw Water	Effluent	Backwash
Month	month	Raw Water	Effluent	Gallons/Day	Gallons/Day	Gallons/Day
International	3.1	27 256 000	*23,105,000	879,226	745,323	133,903
Jan Est	20	24,082,000	*20,704,000	830,414	713,931	116,483
ren Mer	31	23,002,000	*22,432,000	771,097	723,613	47,484
Mai	30	28,23,000	*22,760,000	938,100	758,667	179,433
Apr) (28,115,000	23,707,000	913,032	764,742	148,290
Iviay	30	38.250.000	29.564,000	1,275,000	985,467	289,533
Juli). 	37,804,000	31 628 000	1,219,484	1,020,258	199,226
in ,	11	34 128 000	28,322,000	1,100,903	913,774	187,129
Aug	30	30,742,000	26,027,22	1,024,733	866,967	157,767
och Oct	3.1	31 086 000	26,615,000	1,002,774	858,548	144,226
	30	28,268,000	25,582,000	958,933	852,733	106,200
Average	30	30,224,273	27,347,429	992,154	836,729	155,425

*Effluent meter out of service, readings are from bulk sales and customer meters.

Table 6. Estimated Hydrologic Loading to Stafford Pond.

Sources	efs		ft³/yr	m³/yr	% of Total
Inputs					16.0
Direct precipitation	2.52		79,470,720	2,250,372	46.0
Ground water inseepage	*0.5-1.5	*	15,768,000 - 47,304,000	*446,502 - 1,339,507	10.5
Best estimate	1.0		31,536,000	893,005	18.2
Surface water - base flow					
Sub-basin			_	0	0.0
#1 - Southwest		&	0	0	0.0
#2 - Southeast		&	0	0	0.0
#3 - Northeast		&	0	0	0.0
#4 - Northwest		&	0	0	0.0
#5 - Northern tributary	0.32	#	10,091,520	285,762	5.8
#6 - Western tributary	0.39	#	12,299,040	348,272	7.1
Surface water - storm flow					
Sub-basin				116.001	2.1
#1 - Southwest	0.13		4,099,680	116,091	2.4
#2 - Southeast	0.35		11,037,600	312,552	6.4
#3 - Northeast	0.12		3,784,320	107,161	2.2
#4 - Northwest	0.30		9,460,800	267,901	5.5
#5 - Northern tributary	0.13		4,099,680	116,091	2.4
#6 - Western tributary	0.22		6,937,920	196,461	4.0
Total	5.48		172,817,280	4,893,667	100
Outputs					20.0
Evaporation	1.7	,	53,611,200	1,518,108	30.9
Ground water outseepage	*0.1-0.3	;	*3,153,600 - 9,460,800	*89,300 - 267,901	*2-5
Best estimate	0.2	2	6,307,200	178,601	3.6
Surface outflow	2.3	}	72,532,800	2,053,911	41.8
Net Withdrawal	1.3	3	40,996,800	1,160,906	23.6
Total	5.3	5	173,448,000	4,911,527	100

Additional calculations are provided in Appendix B

[#] Baseflow remaining after groundwater estimate partitioned among two stream systems based on measured relative flow (B5 @ 45%, B6 @ 55%)

i .	Years	Days
Calculated Detention Time	1.54	562
Calculated Flushing Rate	0.65/	0.002/
	0.65-1.08	237-394

^{*}Approximate range of values, not added into totals.

[&]amp; Baseflow included as groundwater only; no stream system in basin

Ground water inseepage accounted for 18% of all inputs, with total inflow averaging 1.0 cfs. Estimation of ground water inputs was difficult in this case and may be substantially more or less at times, but is not very large in any case. Surface water storm flows accounted for 23% of all inputs, at 1.25 cfs, with individual basin inputs ranging from 0.12 to 0.35 cfs. Significant runoff would be expected in this watershed according to geology/soils information. Surface water baseflows accounted for the remainder of all inputs with an estimated contribution of 0.7 cfs or 13%. Base flow, exclusive of ground water inputs to the pond, include dry weather flow in the tributaries. Measured tributary flows include base flow and storm flows, and appear higher than would be expected, probably due to higher than normal precipitation during 1996.

Pond outputs were derived from a combination of evaporation, ground water outseepage, surface outflow, and withdrawal (by the water treatment facility). Surface outflow accounted for the greatest single output at 2.3 cfs or 42% of the total; this value is lower than might be expected from 1996 field measurements, but is consistent with other outputs and known watershed yield relationships. Evaporation accounted for 1.7 cfs or 31% of the total, a substantial percentage for this part of the country; this is a result of the small watershed:lake area ratio. Net withdrawal from the water treatment facility accounted for 1.3 cfs or slightly less than 24% of all pond outputs. Finally, ground water outseepage accounted for 0.2 cfs or slightly less than 4% of the total.

According to morphometric features and hydrologic data, Stafford Pond has a flushing rate of 0.65 times per year, a detention time of 1.54 years (562 days), and a response time of 0.65-1.08 years (237-394 days). The flushing rate is the actual number of times in a given year that the entire water volume could be replaced by inputs. The inverse of flushing rate is the detention time, the average length of time that water remains in the pond. The response time is the amount of time required for the pond to fully respond to inputs. These values are important to the manner in which the system processes pollutant inputs, and the relative length of the detention and response times suggest that pollutants stay in the pond long enough to fully impact water quality. Alternatively, if changes in pollutant loading were made, it would take most of a year before appreciable changes in water quality became detectable.

Based on the known general seasonal pattern for inputs and outputs in southern New England (Sopper and Lull 1970), a seasonal hydrologic budget can be derived (Table 7). The inputs and outputs balance on average and during fall and winter, but not in spring and summer. Owing largely to changes in storm flow and tributary base flow on the input side and evaporation on the output side, inputs exceed outputs by 1.2 cfs during the spring and outputs exceed inputs by 1.2 cfs during summer. Conditions in wet or dry years could vary considerably, much as with long-term average and actual annual precipitation, but this pattern helps explain changing water levels in Stafford Pond. Based on the average conditions, one would expect to lose about 9,540,000 ft³ of water over the summer, and to regain in the following spring. This equates to a water level fluctuation of approximately 0.5 ft. In a wet year (1996), there might be minimal fluctuation, while in a dry year (1995) the fluctuation could be as great as 2.0 ft (0.8 ft from withdrawal, 1.2 ft from evaporation).

Table 7. Generalized Seasonal Hydrologic Budget for Stafford Pond.

Source	Winter	Spring	Summer	Fall	Average
Inputs*					
Precipitation	2.5	2.8	2.2	2.5	2.5
Inseenage	1.3	1.3	9.0	8.0	-
Base Flow	0.7	1.4	0.0	0.7	0.7
Storm Flow	1.5	2.5	0.2	1.0	1.3
Total	0.9	8.0	3.0	5.0	5.5
Outputs*					
Evaporation	0.8	2.0	2.6	1.4	1.7
Outseepage	0.2	0.3	0.1	0.2	0.2
Overflow	3.9	3.2	0.0	2.1	2.3
Withdrawal	1:1	1.3	1.5	1.3	1.3
Total	0.9	8.9	4.2	5.0	5.5

CHEMICAL CHARACTERISTICS

Routine Water Chemistry

Values for routine water monitoring parameters are summarized in Table 8. Detailed data tables are included in Appendix A.

Dissolved oxygen, as the name implies, is the amount of molecular oxygen dissolved in the water column. Dissolved oxygen below 5.0 mg/L is generally considered undesirable for many species of aquatic life, especially trout. Additionally, release of phosphorus from benthic sediments is often a concern under anoxic or very low oxygen (<1.0 mg/L) conditions. Tributary values ranging from 2.2-5.0 mg/L were recorded during early summer, just before both tributaries went dry (Appendix A). Dissolved oxygen profile values ranging from 1.0-5.0 mg/L were recorded in the bottom two meters of the pond, primarily during the summer months (Figures 10a-10n and Appendix A). Atmospheric inputs appear to counteract sediment oxygen demand most of the time.

The lake geometry ratio (Hondzo and Stefan 1996) for Stafford Pond was 5.2. Lakes with ratios >8 are generally well mixed and have high dissolved oxygen concentrations. Lakes with ratios <2 are generally seasonally stratified and have low dissolved oxygen concentrations near the pond bottom during stratification. Stafford Pond falls between these categories and conditions in the pond can reflect both scenarios, depending upon weather conditions. During the 1996 study year, mixing was substantial nearly all of the time. However, the hot dry weather of the summer of 1995 and other years may have allowed greater stratification and lower oxygen levels than observed in 1996.

The temperature regime of an aquatic ecosystem is important in determining community structure. In general, values exceeding 20°C are undesirable for cold water species including trout. As expected, tributary values were low during the winter months and climbed to over 20°C during early summer, just before both tributaries went dry (Appendix A). In-pond temperature profiles revealed seasonal stratification and values exceeding 20°C at all water depths during July, August, and early September (Figures 10a-10n and Appendix A).

The pH is a measure of acidity. Minimum and maximum values were 4.3 and 9.5 SU, respectively (Table 8), which is a rather wide range. Average pH per sample site ranged from 5.6 to 7.9 SU, also a wide range. The likely range of pH values for unimpacted aquatic systems in this region is 5.5-7.5 SU. Values of 5.5 SU or less were recorded at SP3, SP5a, and SP6. A pH of 4.3 SU was recorded at SP3 in February; subsequent readings at this site were substantially higher. The reason for this low reading is not known. Low values at SP5a and SP6 are likely a result of the close proximity of these sites to up-gradient wetlands. Wetland waters are typically lower in pH due to normal wetland functions including decomposition. Values >7.5 SU were recorded at SP1a, SP1b, and SP3. Elevated pH at these sites is likely a result of increased biological activity, specifically algal blooms which remove CO₂ and raise the pH.

Table 8. Results of Routine Water Quality Monitoring at Stafford Pond (1996).

							Sa	Sampling Locations	tions			\ de	200	c D 1 1	CDIO
	11-24	CD1.	SPIL	SP1c	SP1d	SP1e	SP2	SP3	SP4	SP5a	SP5b	ok.	or.	3L11	21.14
Parameter	Units	21.14													
Hd			1	•	,	-	r	v	14	7	10	2		-	-
number of samples (n)		14	2	7	7	Ţ	۹ !	n e		4	77	26		6.5	6.5
	SI	7.3	7.9	8.9	9.9	6.4	6.7	6.7	0.0	ָה היים	5 () V		9	6.5
mean	3 5	6.4	6.7	9.9	6.5	0.9	6.3	4.3	6.2	5.5	6.9	4.0		3	, v
mummm	2 5		; o	7.0	6.7	7.0	7.0	9.4	7.0	5.7	6.5	2.		0.0	0.0
maximum	ns.		y. O.	?	j										,
Total Alkalinity		;				14	~	ς.	14	7	10	10		-	
number of samples (n)		14				<u>.</u>	ı v	. 0	œ	7	51	7		6	9
mean	mg/L	7				, ب	ገ ‹	o -	, ,	· v	500	⊽		6	9
***************************************	me/L	5				9	n		n ;	٠ (3	, ,		σ	9
11611111111111111111111111111111111111	me/L	01				14	7	=	=	ъ	8	n		`	•
The state of the s	h H									1	:	i,		-	-
10tal figuress		7.				14	7	Ś	14	7	01	n		-	- ·
number of samples (n)	ŧ	<u> </u>				20	82	18	10	27	78	15		<u>∞</u>	18
теан	mg/L	<u> </u>				17	. 91	91	90	24	44	Ξ		18	<u>&</u>
minimum	mg/L	16			-	: 6	2 5	2 6	20	30	106	78		81	18
maximum	mg/L	71				77	2	2	3	2		i			
Conductivity			•	4	Ċ	2	r	ų	14	2	10	10		-	-
number of samples (n)		4	7	7	7	<u> </u>	4 ;	3 ر	: 8	9 6	177	OX.		100	100
and the second	umhos/cm	80	75	78	75	8	65	81	3	ربر (و	1/7	8		9.0	901
mean	mayoo dan	95	70	75	70	65	09	65	65	80	125	45		100	901
minimum	alitico citi	8 2	9	Ö	08	100	70	100	110	110	360	150		90	3
maximum	umhos/cm	3	0	8	ŝ	2									
Turbidity		;	c	r	·	14	,	~	14	2	10	01		-	
number of samples (n)		14	7 .	4 ,	4 4		-	3.6	8	1.4	5.8	0.8		9.0	0.4
mean	E L	4.2	15.5	0.0	2.0	1.4	2,1) t	ic		-	0.4		9.0	0.4
minimum	PIN	8.0	1.5	1.5	2.2	0.0	9.0	7.0			. 01			0.6	0.4
maximum	NTO	21.0	29.5	5.7	3.0	8.9	<u>?</u>	C.Y.	7.0	<u>+</u>	r or	:		;	
Secchi Transparency															
number of samples (n)		13													
nean	E	1.5													
minimum	E	0.5													
naximum	E	2.9													
Chlorophyll a															
number of samples (n)															
nean	ng/L	22							9I						
minimum	ng/L	3							7 ;						
maximum	ng/L	118							69						

Table 8. Continued.

								Sampling Locations	ations	ě	CHEL	cok	Zas.	SP11	SP12
Parameter	Units	SP1a	SP1b	SP1c	SP1d	SPie	SP2	SP3	SP4	or sa	nc ic				
N. C.												•	ç	-	-
Nitrite+Nitrate introgen			c	C	c	14	7	'n	14	7	01	2	01.	1 0	
number of samples (n)		+ 1	4 0	3 5	5	0.05	0.05	0.04	0.04	0.04	66.0	0.04	0.08	0.0	0.00
mean	mg/L	0.05	0.05	0.03	50.0	5 6	600	2007	<0.03	<0.03	0.11	<0.03	<0.03	0.05	0.00
the state of the s	me/L	<0.03	0.03	0.03	0.04	c0.0>	60.07	3 3	900	900	2.50	91.0	0.22	0.05	90:0
naxinam	mg/L	0.16	90.0	0.03	0.04	0.17	0.08	0.10	60.03	9.0	2				
Annonium Nitrogen	ı				•	:	·	v	1.4	~	10	01	10	, ,	<u></u>
(n) solumos Jo segumen		14	7	7	7	1	4	ָּיָר ר		2	1 73	0.14	000	<0.05	0.10
(in conducts of require	mø/ľ.	0.13	0.15	0.23	0.23	0.19	0.14	0.14	0.12	C1.0	77.	700	20.6	\$0 0×	01.0
mean	mg/I	<0.05	0.08	0.14	0.15	<0.05	0.09	<0.05	<0.05	0.12	15.0	9 6	21.0	20.05	010
maximum	mg/L	0.44	0.21	0.31	0.30	0.48	0.18	0.22	0.28	0.13	4.00	+ 7.0	3		
Inorganic Nitrogen)				•		c	v	14	·	10	10	10		*****
(n) softmans for my min		14	7	7	7	4	7		<u> </u>	1 5	2	010	0.17	800	0.16
number of sampses (19	mø/I.	0.17	0.19	0.26	0.27	0.24	0.19	0.18	0.16	0.17	77.7	6.17	00.0	80.0	0.16
mean) pu	0 40 0>	0.11	0.17	0.19	0.04	0.17	0.04	0.04	0.14	0.12	0.11	00.0	9.00	91.0
minimum		0.48	7,00	0.34	0.34	0.50	0.20	0.27	0.30	0.19	6.04	9 9 9	4.35	0.08	0.10
maximum	mg/L	0.40	0.20	-	!										
Fotal Kjeldahl Nitrogen		•	,	•	c	14	2	~	14	2	01	10	10	,	,
number of sumples (n)		14	7	۷ ,	1 6		9	0.1	60	10	2.4	0.7	0.7	0.3	4.0
mean	mg/L	6.0		1.0	6.0	0.1	, o	0.) o	50	5	0.1	0.3	0.4
ainianim	mg/L	0.5	9.0	0.7	0.7	0.5	9.0	4.O	† (0.0) 4	• •		6.0	0.4
mittimin	me/L	1.5	1.6	1.2	1.0	9.1	_:	1.7	5.	Ξ	9.8	2	2.	1	.
The state of the s)									,		5	9	-	_
total tyterogen		14	0	2	7	14	7	5	4	7	10	0	OI :	. ,	. (
number of samples (n)	5	* 0	-	0 #	0.0	1.0	6.0	1.0	6.0	1.0	3.4	8 .0	0.7	† .0	C.
mean	mg/L	K.O.	1:1	5 6	0.7	90	0.7	0.4	0.5	6.0	1.3	0.1	0.1	0.4	0.5
minimum	mg/L	C.5	0.0	· ·	; ;		; ;	1.7	1 4	_	7.2	1.5	[]	0.4	0.5
maximum	mg/L	1.5	1.7	1.7	0.1	0.1	3	3	:	:	!				
Total Phosphorus			•	(•	-	r	v	14	C	10	01	10	_	
number of samples (n)		14	7	7	7 6	11	7000	7500	0.00	0800	0.805	0.048	0.033	0.018	0.010
mean	mg/L	0.036	0.045	0.044	0.039	0.03	0.030	0.034	2000	0.067	0000	V 100	0000	8100	0.000
Rinajisin	me/L	0.019	0.042	0.039	0.031	0.027	0.030	0.032	0.022	0.040	0.230	F10.0	0.020		0100
marim	me/L	0.053	0.047	0.049	0.046	0.097	0.042	0.130	0.079	0.137	2.279	0.110	0.049	0.018	0.010
W Dhorathorne	b L														
Dissolved Fnosphorus		2	_		_	12	7	4	12	7	6	6	0		
number of samples (n)	1	21	0.037	0.038	0.017	0.033	0.023	0.038	0.027	0.065	0.618	0.038	0.024	0.005	0.005
mean	ııığıı.	2000	600	0.038	0.017	0.017	0.015	0.024	0.010	0.020	0.010	0.014	0.010	0.005	0.005
minimum	mg/l.	0.00	100.0	0.038	10.0	1000	0.030	0.055	5500	0.109	1.900	0.075	0.044	0.005	0.005
maximum	mg/l.	0.046	0.037	0.038	0.017	100.0	۷,۷۷	7.77	21.01.2		;				

Figure 10a. Dissolved Oxygen/Temperature Profiles Recorded at Stafford Pond (SP1) on February 21, 1996.

Figure 10b. Dissolved Oxygen/Temperature Profiles Recorded at Stafford Pond (SP1) on March 19, 1996.

Figure 10c. Dissolved Oxygen/Temperature Profiles Recorded at Stafford Pond (SP1) on April 17, 1996.

Figure 10d. Dissolved Oxygen/Temperature Profiles Recorded at Stafford Pond (SP1) on May 14, 1996.

Figure 10e. Dissolved Oxygen/Temperature Profiles Recorded at Stafford Pond (SP1) on May 29, 1996.

Figure 10f. Dissolved Oxygen/Temperature Profiles Recorded at Stafford Pond (SP1) on June 10, 1996.

Figure 10g. Dissolved Oxygen/Temperature Profiles Recorded at Stafford Pond (SP1) on June 27, 1996.

Figure 10h. Dissolved Oxygen/Temperature Profiles Recorded at Stafford Pond (SP1) on July 17, 1996.

Figure 10i. Dissolved Oxygen/Temperature Profiles Recorded at Stafford Pond (SP1) on July 30, 1996.

Figure 10j. Dissolved Oxygen/Temperature Profiles Recorded at Stafford Pond (SP1) on August 8, 1996.

Figure 10k. Dissolved Oxygen/Temperature Profiles Recorded at Stafford Pond (SP1) on August 22, 1996.

Figure 10l. Dissolved Oxygen/Temperature Profiles Recorded at Stafford Pond (SP1) on September 5, 1996.

Figure 10m. Dissolved Oxygen/Temperature Profiles Recorded at Stafford Pond (SP1) on September 30, 1996.

Figure 10n. Dissolved Oxygen/Temperature Profiles Recorded at Stafford Pond (SP1) on October 29, 1996.

Total alkalinity is a measure of buffering capacity or the ability of water to neutralize acids. Waters with a total alkalinity <20 mg/L are generally susceptible to acid precipitation. Sampling results indicate that values were significantly lower than 20 mg/L at all sites except SP5b (Table 8). Higher values at SP5b may be a result of inputs from a dairy farm located in this area of the watershed.

Total hardness is a measure of the amount of calcium and magnesium salts dissolved in the water column. Values <60 mg/L are generally considered low. Results indicate that total hardness was low at all sample sites except SP5b (Table 8). Higher values at SP5b may be a result of inputs from a dairy farm located in this area of the watershed.

Conductivity is the indirect measure of dissolved solids in the water column. Average conductivity was low (<100 umhos/cm) at all sites except SP5b, where an average of 271 umhos/cm was considered high (Table 8). Elevated values at SP5b may be a result of inputs from a dairy farm located in this area of the watershed.

Turbidity is a measure of the amount of particulate matter in the water column. Particulate matter may include everything from inorganic particles to plankton. Elevated values (>5 NTU) were documented at a number of sites on several dates (Table 8). Elevated in-pond values were most often a direct result of significant algal blooms. Elevated tributary values were most often a result of increased flows which carried higher loads of particulate matter from the watershed.

Secchi disk transparency is a measure of water clarity and is also a good indicator of trophic state. This value is obtained by lowering a circular disk in the water column until it is no longer visible. The most critical time of year to evaluate Secchi depth is during summer, when algal blooms are often a problem. Measurements less than 2 meters are generally considered indicative of eutrophic conditions. Values recorded in Stafford Pond ranged from 0.5 to 2.9 m, with lower values predominating during late summer and early fall, when algal blooms were common (Table 8). The average value for Stafford Pond was 1.5 m.

Chlorophyll is a green plant pigment essential to photosynthesis. Measuring the concentration of chlorophyll <u>a</u> is a useful indicator of a waterbody's trophic state or degree of nutrient enrichment. Values in Stafford Pond ranged from 2 to 118 ug/L, with a mean of 22 ug/L (Table 8). Higher concentrations predominated during late summer and early fall, when algal blooms were common. In general, values exceeding 10 ug/L are characteristic of eutrophic conditions. Average concentrations exceeded this threshold at both sampling locations, and summer values were consistently above this threshold.

Nitrogen and phosphorus are essential plant nutrients. Excessive concentrations can often fuel undesirable growths of algae, and accumulations in the sediment can promote the growth of rooted aquatic plants. Values of nitrite+nitrate nitrogen were low (<0.5 mg/L) at all sites except SP5b, where the average was 0.99 mg/L (Table 8). Values of ammonium nitrogen were low (<0.5 mg/L) at all sites except SP5b, where the average was 1.23 mg/L (Table 8). Inorganic nitrogen, or the combined concentration of ammonium+nitrite+nitrate was also low at all sites except SP5b, where the average was 2.22 mg/L (Table 8). Water column values exceeding 1.0

mg/L are undesirable. No distinct trends were observed with depth. Average TKN, which includes ammonium nitrogen and organically bound nitrogen was generally low (<1.0 mg/L) at all sites except SP1b and SP5b, where values were 1.1 mg/L and 2.4 mg/L, respectively (Table 8). Total nitrogen, or the combined concentration of TKN+nitrite+nitrate was low at all sites except SP5b, where the average was 3.4 mg/L (Table 8). Water column values exceeding 2.0 mg/L are undesirable. No distinct trends were observed with depth.

Concentrations of total phosphorus were generally elevated (>0.025 mg/L) and indicative of eutrophic conditions at all routine sampling locations except SP11 and SP12, the filter backwash discharges (Table 8). Phosphorus concentrations were low at the latter two sites, as samples at both sites consisted of treated water from the water treatment facility, but these were only sampled once each. Average phosphorus concentrations were high (>0.05 mg/L) at SP1e, SP3, and SP5a. Average phosphorus concentrations were exceedingly high (>0.1 mg/L) at SP5b.

The dissolved phosphorus fraction was typically greater than the particulate phosphorus fraction at most sampling locations, suggesting excess available phosphorus (Table 8). Comparison between in-pond surface (SP1a) and bottom (SP1e) samples revealed that total phosphorus was generally higher on the bottom, indicating some degree of internal recycling. The total nitrogen:total phosphorus ratio in Stafford Pond was typically greater than 15:1, indicating that phosphorus is most likely the limiting nutrient to plant growth in this system. However, factors other than nutrients (e.g. light) are likely to limit algal growth during summer in Stafford Pond. Additionally, N:P ratios may slip below 10:1 during mid- to late summer, when inputs are low and internal recycling of phosphorus is maximal.

Supplemental Water Chemistry

Values for supplemental water monitoring parameters are summarized in Table 9. Detailed data tables are included in Appendix A.

Cadmium is a toxic metal used in galvanizing, in nickel-cadmium batteries, and as a pigment (Brady 1990). Cadmium was not detected in water samples at Stafford Pond.

Lead is a toxic metal commonly found in aquatic ecosystems. Anthropogenic sources of lead include the combustion of oil, gasoline, and coal (Brady 1990). Lead was detected at sampling location SP1a. The lead concentration at this site was below the Maximum Contaminant Level for drinking water (USEPA 1996), but slightly above the chronic toxicity threshold for aquatic life (RIDEM 1988). Acute and chronic toxicity thresholds were determined for Stafford Pond using a total hardness value of 25 mg/L.

Mercury is a toxic metal used in metallurgy, thermometers, pesticides, and as a catalyst for synthetic polymers (Brady 1990). A single water sample was collected at SP1a during the month of October and was analyzed for total mercury. Mercury was not detected (<0.00255 ug/L) in this sample.

Table 9. Results of Supplemental Water Quality Monitoring at Stafford Pond (1996).

			Sampl	ing Locatio	ns	
Parameter	Units	SP	1a	SP1e	SP3	SP4
Cadmium (total)						_
number of samples (n)		2	1	2	1	2
mean	mg/L	< 0.001	<0.00013	<0.001	<0.001	< 0.001
minimum	mg/L	< 0.001	< 0.00013	<0.001	< 0.001	<0.001
maximum	mg/L	< 0.001	<0.00013	< 0.001	<0.001	<0.001
Cadmium (dissolved)						,
number of samples (n)		2		2	1	2
mean	mg/L	< 0.001		<0.001	< 0.001	<0.001
minimum	mg/L	< 0.001		<0.001	< 0.001	< 0.001
maximum	mg/L	< 0.001		<0.001	< 0.001	<0.001
Lead (total)					_	_
number of samples (n)		2	1	2	1	2
mean	mg/L	< 0.005	0.00079	< 0.005	< 0.005	<0.005
minimum	mg/L	< 0.005	0.00079	< 0.005	< 0.005	<0.005
maximum	mg/L	< 0.005	0.00079	< 0.005	<0.005	< 0.005
Lead (dissolved)						_
number of samples (n)		2		2	1	2
mean	mg/L	< 0.005		< 0.005	< 0.005	< 0.005
minimum	mg/L	<0.005		<0.005	< 0.005	< 0.005
maximum	mg/L	< 0.005		< 0.005	< 0.005	< 0.005
Mercury (total)						
number of samples (n)			1			
mean	ug/L		<0.00255			
minimum	ug/L		<0.00255			
maximum	ug/L		< 0.00255			
Copper (total)						_
number of samples (n)		2		2	1	2
mean	mg/L	0.02		0.02	0.02	0.03
minimum	mg/L	0.01		0.01	0.02	0.02
maximum	mg/L	0.03		0.03	0.02	0.03
Copper (dissolved)						_
number of samples (n)		2	:	2	1	2
mean	mg/L	0.02		0.02	0.01	0.02
minimum	mg/L	0.01		0.01	0.01	0.02
maximum	mg/L	0.02	2	0.02	0.01	0.02
Aluminum (total)					_	
number of samples (n)		-2	2	2 ·	1	2
mean	mg/L	0.02		< 0.02	0.14	0.03
minimum	mg/L	<0.02		< 0.02	0.14	<0.02
maximum	mg/L	0.03	3	< 0.02	0.14	0.05
Aluminum (dissolved)						-
number of samples (n)			2	2	1	2
mean	mg/L	0.0		<0.02	0.02	0.03
minimum	mg/L	<0.03		< 0.02	0.02	<0.02
maximum	mg/L	0.0	3	<0.02	0.02	0.04

Table 9. Continued.

	·		Sampling Location	S	
Parameter	Units	SP1a	SP1e	SP3	SP4
Calcium (total)					
number of samples (n)		2	2	1	2
mean	mg/L	4.4	4,4	4.1	4.6
minimum	mg/L	4.3	4.3	4.1	4.6
maximum	mg/L	4.4	4.4	4.1	4.6
Magnesium (total)					
number of samples (n)		2	2	1	2
mean ·	mg/L	1.5	1.5	1.4	1.6
minimum	mg/L	1.5	1.5	1.4	1.6
maximum	mg/L	1.5	1.5	1.4	1.6
Sodium (total)	-				
number of samples (n)		2	2	1	2
mean	mg/L	9.2	9.2	9.4	9.6
minimum	mg/L	9.1	8.9	9.4	9.5
maximum	mg/L	9.2	9.4	9.4	9.7
Chloride (total)	, •				
number of samples (n)		2	2	1	2
mean	mg/L	21	21	21	22
minimum	mg/L	20	20	21	21
maximum	mg/L	22	21	21	22
Iron (dissolved)	ŭ				
number of samples (n)		2	2	1	2
mean	mg/L	0.07	0.09	0.04	0.05
minimum	mg/L	0.06	0.08	0.04	0.05
maximum	mg/L	0.07	0.10	0.04	0.05
Manganese (dissolved)	J				
number of samples (n)		2	2	1	2
mean	mg/L	0.01	0.09	0.01	0.01
minimum	mg/L	0.01	0.08	0.01	0.01
maximum	mg/L	0.01	0.10	0.01	0.01
ТРН	Ü				
number of samples (n)		2	2	2	2
mean	mg/L	1.7	1.5	< 0.5	1.5
minimum	mg/L	< 0.5	<0.5	< 0.5	<0.5
maximum	mg/L	3.2	2.7	<0.5	2.7
4,4'-DDT	J				
number of samples (n)		2	2	1	2
mean	ug/L	< 0.05	< 0.05	<0.05	< 0.05
minimum	ug/L	< 0.05	<0.05	< 0.05	< 0.05
maximum	ug/L	< 0.05	< 0.05	<0.05	<0.05

Table 9. Continued.

		Sa	mpling Location	S	
Parameter	Units	SP1a	SP1e_	SP3	SP4
PCB:*					•
number of samples (n)		2	2	1	2
Aroclor 1016	ug/L	<0.5	<0.5	<0.5	<0.5
Aroclor 1221	ug/L	<1.0	<1.0	<0.5	<1.0
Aroclor 1232	ug/L	<0.5	< 0.5	<0.5	<0.5
Aroclor 1242	ug/L	<0.5	<0.5	<0.5	<0.5
Aroclor 1248	ug/L	< 0.5	< 0.5	<0.5	<0.5
Aroclor 1254	ug/L	<0.5	< 0.5	<0.5	<0.5
Aroclor 1260	ug/L	<0.5	<0.5	<0.5	<0.5
PAH:*					_
number of samples (n)		2	2	1	2
Acenaphthene	ug/L	<1	<1	<1	<1
Acenaphthylene	ug/L	<1	<1	<1	<1
Anthracene	ug/L	<1	<1	<1	<1
Benzo(a)anthracene	ug/L	<1	<1	<1	<1
Benzo(b)fluoranthene	ug/L	<1	<1	<1	<1
Benzo(k)fluoranthene	ug/L	<1	<1	<1	<1
Benzo(ghi)perylene	ug/L	<1	<1	<1	<]
Benzo(a)pyrene	ug/L	<1	<1	<1	<1
Chrysene	ug/L	<1	<1	<1	<}
Dibenzo(a,h)anthracene	ug/L	<1	<1	<1	<]
Fluoranthene	ug/L	<1	<1	<1	<]
Fluorene	ug/L	<1	<1	<1	< }
Indeno(1,2,3-cd)pyrene	ug/L	<1	<1	<1	<)
2-Methylnaphthalene	ug/L	<1	<1	<1	<
Naphthalene	ug/L	<1	<1	<1	<
Phenanthrene	ug/L	<1	<1	<1	<
Pyrene	ug/L	<1	<1	<1	<

^{*}Mean, minimum, and maximum values were identical.

Copper is categorized as a micro-nutrient essential to plant growth and is generally considered relatively low in toxicity compared to other heavy metals. Common anthropogenic sources of copper include mine tailings, fly ash, and fertilizers (Brady 1990). In recent years, copper sulfate has been used as an algicide in Stafford Pond. In lakes where copper sulfate has been used to control algae, it often accumulates as copper carbonate in benthic sediments. Furthermore, as is true for other metals, it may re-enter the water column through internal recycling (Cole 1983). Concentrations in Stafford Pond were below the MCL for drinking water (USEPA 1996), but were above acute and chronic toxicity thresholds for aquatic life (RIDEM 1988). Additionally, copper concentrations in a single precipitation sample were as high as the in-pond values.

Aluminum is a common element in the crust of the earth and naturally enters the aquatic environment through weathering of rock. It has a wide range of metallurgical uses, but has also been used extensively in a variety of water treatment applications, primarily owing to its coagulant properties. Aluminum has been linked to the toxicity of both plants and animals, including humans, but there is considerable controversy over the form and quantity of aluminum necessary to cause a toxic effect. Aluminum concentrations were normal at all sampling locations according to our experience in New England.

Calcium and magnesium are macro-nutrients essential to plant growth. In the aquatic environment, concentrations of these ions are responsible for water hardness, the quality of water that prevents soap from dissolving. Concentrations of total calcium and magnesium were low at all in-pond sampling locations. Sodium and chloride are often indicators of contamination from sewage and/or road salt. In-pond concentrations were moderate and did not indicate significant contamination.

Iron and manganese are micro-nutrients essential to plant growth. In the aquatic environment, dissolved fractions of these elements play an important role in phosphorus cycling. Both elements are known to complex with phosphorus, the end product being a compound that is highly insoluble under oxygenated conditions and moderate pH. Concentrations of both metals were considered relatively low at all in-pond sampling locations according to our experience in New England. Peak values for both metals occurred near the pond bottom (SP1e). This is likely a result of hypoxia at the sediment-water interface and the associated reduction and solubilization of selected metal ions in benthic sediments.

Monitoring of selected organic compounds in water from Stafford Pond indicated relatively low levels. In-pond concentrations of total petroleum hydrocarbons (TPH) ranged from <0.5 to 3.2 mg/L. Concentrations above 1 mg/L are sometimes cause for concern, but many natural compounds can register as TPH in typical laboratory tests. Polynuclear aromatic hydrocarbons (PAH) provide a better indication of anthropogenic hydrocarbon inputs. PAH, along with DDT and PCB's, were not detected.

Storm Water Chemistry

Values for storm water monitoring parameters are summarized in Table 10. Detailed data tables are included in Appendix A.

Average pH recorded during wet weather ranged from 5.1 to 6.5 SU. The lowest pH values were recorded at SP6 (western tributary) and SP10 (precipitation). Lower values at these sites were expected as SP6 was located just down-gradient of a wetland and SP10 was a direct precipitation sample; both wetland waters and normal precipitation are generally slightly acidic. As expected, the remaining sample sites had slightly higher values.

Conductivity values recorded during wet weather ranged from 5 to 23,000 umhos/cm, although values >310 umhos/cm were recorded only at SP9. Average concentrations were low at SP6 and SP10, moderate at SP5b and SP8, and exceedingly high at SP9.

Wet weather turbidity values ranged from <1 to 39 NTU. Values were low at SP6 and SP10, and elevated (>5 NTU) at the remaining sites. Low values were expected at SP10 as this was a direct precipitation sample. The two highest values were recorded at SP5b.

Average wet weather concentrations of nitrite+nitrate nitrogen were low (<0.5 mg/L) at SP6 and SP10, moderate at SP5b, and high (>1.0 mg/L) at SP8 and SP9. Values of ammonium nitrogen were low (<0.5 mg/L) at all sites except SP5b, where the average was 2.46 mg/L. Inorganic nitrogen, or the combined concentration of nitrite+nitrate+ammonium was low at SP6 and SP10, and high at the remaining sites. Water column values exceeding 1.0 mg/L are undesirable. Average TKN was low at SP10 (<1.0 mg/L), and ranged from moderate to high at the remaining sites. Total nitrogen, or the combined concentration of nitrite+nitrate+TKN was low at SP6 and SP10, and high at the remaining sites. Values exceeding 2.0 mg/L are undesirable.

Average wet weather concentrations of total phosphorus were high (>0.05 mg/L) at all sites except SP10. The highest concentrations were recorded at SP5b. The dissolved phosphorus fraction was typically greater than the particulate phosphorus fraction at most storm water sampling locations.

Cadmium was not detected in storm water entering Stafford Pond. Lead was non-detectable at all sites except SP9, where a total concentration of 0.03 mg/L was documented. This concentration was greater than the MCL for drinking water (USEPA 1996) and the acute and chronic toxicity thresholds for aquatic life (RIDEM 1988). Concentrations of copper were below the MCL for drinking water (USEPA 1996) at all storm water sampling locations. However, levels of copper did exceed acute and chronic toxicity thresholds for aquatic life (RIDEM 1988).

Storm water values for aluminum were generally greater than dry weather in-pond values, but were not considered high for storm water. Storm water concentrations of total calcium and magnesium were generally low at all sites except SP5b and SP8, where concentrations were higher than expected background levels, but still not high by regional comparison.

Table 10. Results of Storm Water Monitoring at Stafford Pond (1996).

			Samplin	g Location	15	
Parameter	Units	SP5b	SP6	SP8	SP9	SP10
pН						
number of samples (n)		3	3	2	3	3
mean	SU	6.5	5.2	6.1	5.7	5.1
minimum	SU	6.3	4.5	6.0	4.3	4.5
maximum	SU	6.8	5.5	6.2	6.4	5.6
Conductivity						
number of samples (n)		3	3	2	3	3
mean	umhos/cm	280	77	150	7800	22
minimum	umhos/cm	250	50	110	120	5
maximum	umhos/cm	310	90	190	23000	40
Turbidity						
number of samples (n)		3	3	2	3	3
mean	NTU	18.0	2.5	8.0	8.7	0.7
minimum	NTU	5.1	1.0	5.2	8.1	0.2
maximum	NTU	39.0	4.9	10.8	9.9	1.1
Nitrite+Nitrate Nitrogen	•					
number of samples (n)		3	3	2	3	3
mean	mg/L	0.83	0.03	1.64	1.07	0.25
minimum	mg/L	0.50	< 0.03	0.78	0.78	0.07
maximum	mg/L	1.40	0.05	2.50	1.50	0.59
Ammonium Nitrogen	J					
number of samples (n)		3	3	2	3	3
mean	mg/L	2.46	0.12	0.25	0.20	0.16
minimum	mg/L	0.57	0.08	0.08	0.13	0.08
maximum	mg/L	5.00	0.18	0.41	0.32	0.23
Inorganic Nitrogen						
number of samples (n)		3	3	2	3	3
	mg/L	3.28	0.15	1.89	1.27	0.41
mean minimum	mg/L	1.15	0.12	1.19	0.92	. 0.17
maximum	mg/L	6.40	0.20	2.58	1.82	0.76
Total Kjeldahl Nitrogen						
number of samples (n)		3	3	2	3	3
	mg/L	6.4	1.4	1.2	2.3	0.6
mean	mg/L	1.7	0.9	1.0	2.1	0.2
minimum	mg/L	15.0	1.7	1.3	2.5	1.0
maximum Total Nitrogen						
number of samples (n)		3	3	2	3	. 3
*	mg/L	7.3	1.4	2.8	3.4	0.9
mean	mg/L	2.2	0.9	2.1	3.2	0.3
minimum	mg/L	16.4	1.8	3.5	3.6	1.6
maximum	WE T	10.1		-		
Total Phosphorus		3	3	2	3	3
number of samples (n)	mg/L	2.354	0.052	0.133	0.184	0.02
mean	mg/L	0.822	0.019	0.075	0.126	0.016
minimum maximum	mg/L	3.170	0.073	0.190	0.294	0.043

Table 10. Continued.

			Sampi	ing Locatio	пs	
Parameter	Units	SP5b	SP6	SP8	SP9	SP10
Dissolved Phosphorus	 		· · · · · · · · · · · · · · · · · · ·			
number of samples (n)		3	3	2	3	3
mean	mg/L	1.847	0.044	0.112	0.072	0.017
minimum	mg/L	0.632	0.019	0.074	0.027	0.015
maximum	mg/L	2.700	0.058	0.150	0.097	0.020
Cadmium (total)*	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (dissolved)*	mg/L	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Lead (total)*	mg/L	< 0.005	< 0.005	< 0.005	0.030	<0.005
Lead (dissolved)*	mg/L	<0.005	< 0.005	<0.005	<0.005	<0.005
Copper (total)*	mg/L	0.03	0.01	0.02	0.02	0.03
Copper (dissolved)	mg/L	0.03	0.01	0.02	0.02	0.03
Aluminum (total)*	mg/L	0.35	0.83	0.19	1.1	<0.08
Aluminum (dissolved)*	mg/L	<0.08	0.63	0.13	0.15	< 0.08
Calcium (total)*	mg/L	20.0	2.2	13.0	5.9	0.2
Magnesium (total)*	mg/L	7.0	0.9	2.3	0.9	< 0.1
Sodium (total)*	mg/L	36.0	8.2	26.0	13.0	<0.5
Chloride (total)*	mg/L	78	19	46	26	.<4
Iron (dissolved)*	mg/L	0.61	0.94	0.09	0.09	<0.08
Manganese (dissolved)*	mg/L	0.15	0.03	0.05	0.02	0.01
	mg/L	<0.5	< 0.5	< 0.5	0.9	< 0.5
TPH*	ug/L	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
4,4'-DDT*	ug L	0.00				
PCB:*	ug/L	<0.5	<0.5	< 0.5	< 0.5	< 0.5
Aroclor 1016	ug/L	<0.5	<0.5	<0.5	<0.5	< 0.5
Aroclor 1221	ug/L	<0.5	<0.5	<0.5	<0.5	< 0.5
Aroclor 1232	ug/L	<0.5	<0.5	<0.5	< 0.5	< 0.5
Aroclor 1242	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5
Aroclor 1248	ug/L	<0.5	<0.5	< 0.5	< 0.5	< 0.5
Aroclor 1254	ug/L	<0.5	<0.5	< 0.5	< 0.5	<0.5
Aroclor 1260	ugir	-0.5	-0.0			
PAH:*	ug/L	<1	<1	<1	<1	<1
Acenaphthene	ug/L	<1	<1	<1	<1	<1
Acenaphthylene	ug/L ug/L	<1	<1	<1	<1	<1
Anthracene	ug/L ug/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	-	<1	<1	- <1	<1	<1
Benzo(b)fluoranthene	ug/L	<1	<1	<1	<1	<1
Benzo(k)fluoranthene	ug/L	<1	<1	<1	<1	<1
Benzo(ghi)perylene	ug/L	<1	<1	<1	<1	<1
Benzo(a)pyrene	ug/L	<1	<1	<1	<1	<1
Chrysene	ug/L	<1	<1	<1	<l< td=""><td><1</td></l<>	<1
Dibenzo(a,h)anthracene	ug/L	<1	<1 <1	<1	<1	<1
Fluoranthene	ug/L	<1	<1	<1	<1	<1
Fluorene	ug/L	<i>1</i>	<1 <1	<1	<1 <1	<1
Indeno(1,2,3-cd)pyrene	ug/L		<1	<1	<1	<1
2-Methylnaphthalene	ug/L	<1	<1	<1 <1	<1	<1
Naphthalene	ug/L	<1 <1	<1 <1	<1	<1	<1
Phenanthrene	ug/L	<1 <1	<1 <1	<1	<1	<1
Pyrene *Number of samples≡1	ug/L				-1	

^{*}Number of samples=1.

Storm water concentrations of total sodium and chloride were low at SP10, moderate at SP6, and high at SP5b, SP8, and SP9. High concentrations at SP5b were likely a result of dairy farming activities and road runoff. Road runoff was likely responsible for contamination at the latter two sites. Concentrations of dissolved iron and manganese were relatively low at all sites. However, dissolved iron was somewhat higher than the expected background level at SP5b and SP6, and dissolved manganese was somewhat higher than the expected background level at SP5b. Flushing of anoxic ground water laden with iron or manganese into the tributaries may be responsible.

Storm water monitoring for selected organic compounds indicated relatively low levels. Total petroleum hydrocarbons ranged from <0.5 to 0.9 mg/L. DDT, PCB's, and polynuclear aromatic hydrocarbons were not detected.

Ground Water Chemistry

Shoreline segments sampled during the ground water monitoring investigation are presented in Figure 2. Ground water quality monitoring results are presented in Table 11. Nitrite+nitrate nitrogen values ranged from <0.03 mg/L to 0.28 mg/L. In ground water, the likely range of nitrite+nitrate nitrogen under most "pristine" conditions is 0.01 mg/L to 0.5 mg/L. Values over 1.0 mg/L are unusual without some form of urban or agricultural influence, while values over 10.0 mg/L are considered a health hazard for human consumption. Ammonium nitrogen has a similar range of possible values, as the sources are often the same.

Measured ammonium nitrogen concentrations ranged from <0.05 mg/L to 4.29 mg/L in ground water entering Stafford Pond. Elevated concentrations are probably converted to nitrite and then nitrate shortly after entering oxygenated lake waters, therefore reducing the likelihood of toxicity to aquatic life. The sum of nitrite+nitrate and ammonium nitrogen, or soluble inorganic nitrogen, could be expected to reach up to about 1.0 mg/L under natural conditions. Values much over this concentration raise suspicions of septic leachate influence or other contamination. Ground water concentrations in Stafford Pond were >1.0 mg/L at all sampling locations on either one or both sampling dates, mainly as a consequence of high ammonium nitrogen. This suggests inadequate oxygen in the ground water to convert ammonium to nitrate. The sources could be sewage, agricultural waste, or decaying vegetation.

Dissolved phosphorus concentrations were elevated along all four sampling segments. In general, values in excess of 0.05 mg/L are of concern in terms of eutrophication, and values in excess of 0.10 mg/L can cause serious deterioration of conditions if the phosphorus is biologically available. However, larger values in porewater do not necessarily translate into pond water column values of the same magnitude. Iron and manganese are known to complex with phosphorus, the end product being a compound that is highly insoluble under oxygenated conditions. For phosphorus to become available in the water column at a significant level, it must therefore enter at an elevated concentration with concurrent iron and/or manganese levels at less than five times the phosphorus level. In the case of Stafford Pond, groundwater sampling results indicate that sufficient levels of iron were available to bind phosphorus, as the

Table 11. Results of Groundwater Monitoring at Stafford Pond (1996).

		Nitrate/Nitrite	Ammonium	Phosphorus	Iron	Manganese
Sample Site	Sampling Date	mg/L	mg/L	mg/L	mg/L	mg/L
		4		0100	1 00	010
coutheast	10-Jun	0.03	1.30	0.210	2) (
100000	10 [0.78	4.29	0.048	0.29	0.10
southwest	To-nam	27.0	i (0000	12.00	01 6
northeast	10-Jun	<0.03	S.()	0.030	14.00	27.1
	10 L	<0.03	2.46	0.047	4.10	0.40
northwest	In-OI	60.00) i			
	•	6	900	0 300	3 00	0.11
contheast	22-Aug	<0.03	0.70	2000		
South San	32-4110	0.05	0.22	0.180	<0.08	<0.05
Southwest	3nv-77	50.02	3.00	0.074	9.00	1.60
northeast	8n-77	0.07	20.0			
northwest	22-Aug	<0.03	1.00	0.061	4.60	D. /4

iron:phosphorus ratio was >5:1 at all but one sampling location. Sampling in August revealed that the southwest segment had a ratio <5:1 and a phosphorus concentration >0.05 mg/L. Low flows limit the magnitude of this input, but some phosphorus input from ground water is likely in this area.

Sediment Chemistry

Sediment sampling locations are presented in Figure 4. Sediment sampling results are presented Table 12. Sediments at SP1 and SP2 were primarily composed of medium sand, fine sand, and silt/clay. The silt/clay fraction includes most organic matter, and sediments such as those at SP1 and SP2 with silt/clay levels >30% would be considered mucky. Sediments at SP3 were primarily composed of gravel, medium sand, and fine sand. Sediments such as those at SP3 with silt/clay levels <5% would be considered sandy. Organic carbon content was especially high at SP2, most likely a direct result of inputs from the northern tributary, including a substantial amount of manure. Solids content was low at SP1 and SP2, and high at SP3; low solids content indicates less compacted and typically more organic sediment. Total phosphorus concentrations were high at SP2 and low at the remaining two sites. TKN was low at SP3, moderate at SP1, and high at SP2. Higher nutrient concentrations at SP2 are likely a direct result of inputs from the northern tributary, including manure from the dairy farm.

Metal concentrations were generally within acceptable ranges. Concentrations of cadmium, copper, and lead were below average values for Massachusetts lake sediments (Rojko 1992), which are considered appropriate for evaluation of Rhode Island lakes. This suggests that the use of copper as an algicide has not had a lasting effect on sediments in Stafford Pond at this point in time. Concentrations of iron and manganese were below average values for Massachusetts lake sediments at SP2 and SP3, and slightly above average at SP1. Concentrations of aluminum and calcium were normal, according to our own experience in New England.

Total petroleum hydrocarbons were relatively low at all three sampling locations. DDT and PCB's were not detected in lake sediments. Polynuclear aromatic hydrocarbons (PAH) were detected at all three sampling locations. Elevated PAH concentrations were documented at SP2 and SP3, and are most likely a result of road runoff. Guidance criteria from the National Oceanic and Atmospheric Administration was available for 12 of the 17 PAH's evaluated at Stafford Pond (Long and Morgan 1990). Results indicated that values for all 12 PAH's were below the ER-M, but at least half exceeded the ER-L at sampling locations SP2 and SP3. The ER-L represents the low effects range and the ER-M represents the moderate effects range.

These guidelines are used to assess potential impacts to aquatic life from polluted sediments. According to these guidelines, negative effects to aquatic life are possible if concentrations are between the ER-L and ER-M, and negative effects to aquatic life are probable if concentrations exceed the ER-M. Effects are therefore possible in the cove areas associated with SP2 and SP3, but are unlikely in the main body of the lake.

Table 12. Results of Sediment Sampling at Stafford Pond (1996).

			Sampling Location	8
		Deep Hole	N.E. Bay	Boat Ramp
Parameter	Units	SP1	SP2	SP3
Grain size analysis:		-	_	24.2
gravel	%	<0.1	0.1	26.2
coarse sand	%	1.6	2.2	11.7
medium sand	%	24.8	17.1	31.9
fine sand	%	38.9	40.1	26.3
silt/clay	%	34.6	40.5	3.8
	allea	29,000	175,000	10,000
Total organic carbon	mg/kg %	23	17	80
Solids content	mg/kg	9.9	170	4.2
Total phosphorus		2,600	15,000	91
TKN	mg/kg	2,000	15,000	7-
Total Metals:				-0.1
Cadmium	mg/kg	0.4	0.7	< 0.4
Copper	mg/kg	210	71	21
Lead	mg/kg	130	48	41
Aluminum	mg/kg	7,600	6,300	350
Iron	mg/kg	18,000	10,000	13,000
Manganese	mg/kg	670	260	140
Calcium	mg/kg	1,200	5,400	350
	A.s.	76	240	110
Total Petroleum Hydrocarbons	mg/kg	<15	<21	<4
4,4'-DDT	ug/kg	<13	-21	•
PCB:			-01	<20
Aroclor-1016	ug/kg	<21	<21	<40
Aroclor-1221	ug/kg	<21	<21	
Aroclor-1232	ug/kg	<21	<21	<20
Aroclor-1242	ug/kg	<21	<21	<20
Arocior-1248	ug/kg	<21	<21	<20
Aroclor-1254	ug/kg	<21	<21	<20
Aroclor-1260	ug/kg	<21	<21	<20
P. L Lean Assemble Hardrocarbons'				
Polynuclear Aromatic Hyrdrocarbons:	ug/kg	<16	<300	<39
Acenaphthene	ug/kg	<12	560	160
Acenaphthylene	ug/kg	<8.4	360	88
Anthracene	ug/kg	<10	860	310
Benzo(a)anthracene	ug/kg	•-	800	580
Benzo(b)fluoranthene	ug/kg		<380	460
Benzo(k)fluoranthene	ug/kg	110	-	
Benzo (b,k) fluoranthene	ug/kg	<8	350	140
Benzo(ghi)perylene	ug/kg	48	600	370
Benzo(a)pyrene	_	80	820	490
Chrysene	ug/kg	<8	<510	<120
Dibenzo(a,h)anthracene	ug/kg	130	1100	840
Fluoranthene	ug/kg	<12	250	45
Fluorene	ug/kg		330	150
Indeno(1,2,3-cd)pyrene	ug/kg	40	210	<39
2-Methylnaphthalene	ug/kg	<16		<39
Naphthalene	ug/kg	<18	<230	530
Phenanthrene	ug/kg	56	1300	96
Pyrene PAH analysis at SP1 was conducted by	ug/kg_	110	1500	. 50

PAH analysis at SP1 was conducted by Alpha Analytical, Inc. Analysis at SP2 and SP3

was conducted by Mitkem Corporation.

Sampling conducted on 3/19/96, 5/14/96, and 7/30/96.

Fish Tissue Analysis

Results of the fish tissue analysis (composite of edible portions from 3 white perch, fish ranged in size from 11-12" total length) revealed that levels of selected contaminants were relatively low (Table 13). Cadmium, lead, and PCB's were not detected. Mercury was detected, but the concentration (102 ng/g) was below the recommended Maximum Permissible Level for human consumption according to the Rhode Island Department of Health (Vanderslice 1996). A number of polynuclear aromatic hydrocarbons were also detected, but concentrations were far below recommended Maximum Permissible Levels for human consumption (Vanderslice 1996).

Data Quality Investigations

Data quality monitoring results for water chemistry analyses are included in Appendix A. Variability in most parameters was tolerable, but variation among duplicate nutrient samples was undesirably high. Differences among duplicate nitrogen and phosphorus parameters were not Total phosphorus comparisons between consistent, but suggested considerable lab error. laboratories indicated that samples analyzed by Mitkem Corporation were consistently higher than those analyzed by the University of Rhode Island. This suggests that actual concentrations in Stafford Pond could be somewhat lower than the measured values. This could limit our ability to determine if slightly elevated concentrations are a result of pollution or variability in chemical analyses, and is most troublesome with respect to detection of internal recycling. However, this will not greatly affect our overall interpretation of the chemical data. Even with this significant degree of variability, major sources of pollution are quite obvious, and multiple approaches to nutrient loading provide increased reliability in overall conclusions.

Nitrogen and Phosphorus Loading

Although a variety of pollutants can pose problems for water supply and recreational use of a water body, nitrogen and particularly phosphorus are particularly troublesome. While not toxic at typically observed concentrations, these elements are essential plant nutrients and control the growth of algae. Elevated algal biomass results in aesthetic and functional impairment of water resources, including objectionable odors and tastes, unsafe visibility, oxygen level depression through decay, increased cost of treatment, possible production of toxic compounds (naturally or in combination with treatment), and possible fish kills. Nitrogen is more difficult to control than phosphorus, as it is abundant in the atmosphere, moves readily through soils, and exists in a variety of forms in water. Phosphorus, more often the limiting nutrient than nitrogen, is less common and less mobile, but less of it is required to cause problems. While phosphorus is the more critical target of most lake water quality management efforts, the ratio of nitrogen to phosphorus is a key determinant of the composition of the algal community, and must be considered as well.

The most straightforward approach to estimating nutrient loads is to multiply annual flow volumes by the measured concentration of each nutrient for each defined flow component (e.g., precipitation, tributaries). For sources without measured flow or nutrient levels, estimates can be derived from either comparison with measured sources or literature values to complete the Application of this approach to the Stafford Pond system (Table 14) included itemization of inputs from direct precipitation, ground water inseepage, surface water storm flow

Table 13. Results of Fish Tissue Analysis at Stafford Pond (1996).

Parameter	Units	Result
Sample weight	(g-dry)	5.65
Sample dry weight	%	21.6
Sample lipid	%	12.1
Cadmium (total)	ng/g	<13
Lead (total)	ng/g	<33
Mercury (total)	ng/g	102
PCB:		
Aroclor 1016	ng/g	<20
Arctor 1221	ng/g	<40
Aroclor 1232	ng/g	<20
Aroclor 1242	ng/g	<20
Aroclor 1248	ng/g	<20
Aroclor 1254	ng/g	<20
Aroclor 1260	ng/g	<20
Polynuclear Aromatic Hydrocarbons:		
Acenaphthene	ng/g	<4.34
Acenaphthylene	ng/g	<2.68
Anthracene	ng/g	1.17
Benzo(a)anthracene	ng/g	<2.57
Benzo(b)fluoranthene	ng/g	<3.17
Benzo(k)fluoranthene	ng/g	<7.05
Benzo(g,h,i)perylene	ng/g	<4.73
Benzo(a)pyrene	ng/g	<5.36
Chrysene	ng/g	<3.41
Dibenzo(a,h)anthracene	ng/g	<4.48
Fluoranthene	ng/g	2.92
Fluorene	ng/g	2.41
Indeno(1,2,3-c,d)pyrene	ng/g	<4.47
2-Methylnaphthalene	ng/g	4.76
Naphthalene	ng/g	7.67
Phenanthrene	ng/g	5.63
Pyrene City No. 10 Park 26	ng/g	0.47

Edible portions of three white Perch (Morone americana) were composited and analyzed for the above parameters.

Fish ranged in size from 11-12 inches TL.

Samples collected on 10/29/96.

All units ng/g dry weight.

THE TERMS					
	PHOSPHORUS				
	DADAMETED	STINITS	DERIVATION	VALUE	
SYMBUL	PANAMETER TELEPHONOMY	quu	From in-lake models	To Be Predicted Depen	Dependent Variable
F (Lake lotal Pilospilolus Colic.	kolvr	From export model	445	
٠ ٢	Prosphorus Load to Lane		KG*1000/A	0.226	:
	Prospilotus Load to Lance	qaa	From export model	16	:
- L	Cfluent (Auflet) Total Phosphogis	qaa	From data, if available	_	Enter Value (TP out)
Pout		m3/vr	From export model		
	TINOW Tobo Area	m2	From data	1970818 Enter V	Enter Value (A)
↓	Lake Alea	m3	From data	7696005 Enter V	Enter Value (V)
> !	Lake Volume	2 8	Volume/area	3.905	
7	Mean Depth	Auchinghar	Inflow/world	0.634	
LL.	Flushing Kate	ildsiiiigs/yi	T-to-0.0-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0.362	
S	Suspended Fraction	no units	EMUGAL I PAINIUGALIL I P	777	
Os	Areal Water Load	m/yr	(Z(F)	777.7	
\s	Settling Velocity	٤	(S)Z	1.415	
: : : : : :	Retention Coefficient (settling rate)	no units	((Vs+13.2)/2)/(((Vs+13.2)/2)+Qs)	0.747	
RIM M	Retention Coefficient (flushing rate)	no units	1/(1+F^0.5)	0.557	
	NITROGEN				
SYMBOL	PARAMETER	UNITS	DERIVATION	VALUE	
N.L	Lake Total Nitrogen Conc.	qdd	From in-lake models		Dependent Variable
KG	Nitrogen Load to Lake	kg/yr	From export model	8110	
<u> </u>	Nitrogen Load to Lake	g N/m2/yr	KG*1000/A	4.12	
2	Nitrogen Load to Lake	mg N/m2/yr	KG*1000000/A	4115	
<u>ნ</u>	Coefficient of Attenuation, from F	fraction/yr	2.7183^(0.5541(ln(F))-0.367)	0.54	
C2	Coefficient of Attenuation, from L	fraction/yr	2.7183^(0.71(ln(L2))-6.426)	0.60	
දු	Coefficient of Attenuation, from L/Z	fraction/yr	2.7183^(0.594(ln(L2/Z))-4.144)	66.0	

					PREDICTED CHL AND WATER CLARITY	>
THE MODELS	PHOSPHORUS	PRED.	PERMIS.	CRITICAL		
		CONC.	CONC.	CONC.		
NAME	FORMULA	(qdd)	(qdd)	(qdd)	MODEL	Value
Mass Balance	TP = 1/(7(F)) * 1000	91				
Mass Dalaise					Mean Chlorophyll (ug/L)	
(Maximum Conc.)	TD=1 (1-Rn)/(7/F))*1000	23	16	32	Dillon and Rigler 1974	15.2
Kirchner-Dillon 1973		The second secon			Jones and Bachmann 1976	17.6
(K-D)	TD-1 1/7/S+E1)*4000	58	40	81	Oglesby and Schaffner 1978	19.9
Vollenweider 1975	1F=U(z(3+r)) 1000				Modified Vollenweider 1982	19.2
(V)	TP=I (1-Rlm)/(Z(F))*1000	40	28	56	"Maximum" Chlorophyll (ug/L)	. ,
רשומבוו-ואובורובו ומים	// // // //				Modified Vollenweider (TP) 1982	61.2
(L-IM)	TD=0 84/1 1/7/0 65+F1)*1000	38	26	53	Vollenweider (CHL) 1982	55.7
Jones-Dacillialli 1970	_				Modified Jones, Rast and Lee 1979	61.4
(d-C)					Secchi Transparency (M)	
Soulo/ lobolate		40	28	55	Oglesby and Schaffner 1978 (Avg)	1.4
Average of Model values	0				Modified Vollenweider 1982 (Max)	3.5
(without mass balance)		39			The state of the s	
Reality Check Conc.						
From Vollenweider 1968						-
Permis Load (a/m2/vr	Permis 1 and (a/m2/vr) [Lp=10^(0.501503(log(Z(F)))-1.0018)	0.16				
Critical Load (g/m2/yr) Lc=2(Cp)) Lc=2(Cp)	0.31				
	NITROGEN					
Mass Balance	TN=L/(Z(F))*1000	1662				
(Maximum Conc.)						
Bachmann 1980	TN=L/(Z(C1+F))*1000	899	6			
Bachmann 1980	TN=L/(Z(C2+F))*1000	856	9	Company of the Control of the Contro		
Bachmann 1980	TN=L/(Z(C3+F))*1000	649	6			
-		UUD				
Reality Check Conc.		3				

TABLE 1/b. IN-L.	TABLE 17b. IN-LAKE MODELS FOR PREDICTING	DICTING CONCERTING TOURS.				
TUE MODELS					PREDICTED CHL AND WATER CLARITY	πY
INE MODELS	SUROHASOHA	PRED.	PERMIS.	CRITICAL		
		CONC.	CONC.	CONC.		
AI A RAE	FORMULA	(qdd)	(qdd)	(qdd)	MODEL	Value
	TD-1 //7/E/*1000	91				
Wass balance					Mean Chlorophyll (ug/L)	
(Maximum Conc.)	TD-174 DEV//7/EV*4000	23	16	32	Dillon and Rigler 1974	15.2
Kirchner-Dillon 1975	117=L(1-Kp)/(Z(r)) 1000				Jones and Bachmann 1976	17.6
(K-D)		58	40	8		19.9
Vollenweider 1975	117=L(2(3+r))-1000				<u> </u>	19.2
8	T. 1.1 P. 1.7/7/17/4000	40	28	56	=	
Larsen-Mercier 1976	1P=L(1-Kim)/(L(r)) 1000					61.2
(L-M)	TD-0 84(1 1/7/0 65+F1)*1000	38	26	53	1	55.7
John John Jaron Ja	Jones-Badnilain 1370 11 - 0.04(L)/(2/0.02) // 200		1	:	Modified Jones, Rast and Lee 1979	61.4
(a-c)				:	Secchi Transparency (M)	1
A Action of Model Velice		40	28	55		4.1
Average of Model values			<u> </u>		Modified Vollenweider 1982 (Max)	ကိ
Reality Check Conc.		39	Ì			1
From Vollenweider 1968						
Permis. Load (g/m2/yr	Permis. Load (g/m2/yr) Lp=10^(0.501503(log(Z(F)))-1.0018)	0.16	-			
Critical Load (g/m2/yr) Lc=2(Cp)) Lc=2(Cp)	0.31				
				-		1
	MITROGEN					
Mass Balance	TN = [/(Z{F}) * 1000	1662				
(Maximum Conc.)						
			-	-		
Bachmann 1980	TN=L/(Z(C1+F))*1000	668	<u>~</u>	:		-
Bachmann 1980	TN=L/(Z(C2+F))*1000	856				1
Bachmann 1980	TN=L/(Z(C3+F))*1000	649	<u>-</u>	· .		
				· :		-
Reality Check Conc.		2008	1			

blooms, with average chlorophyll levels between 15 and 22 ug/L and peaks in excess of 60 ug/L. This depresses water clarity, leading to an average Secchi transparency of 1.4-1.5 m. The highest water clarity results in a Secchi depth of 2.9-3.5 m, but this occurs only briefly during the growing season.

Relative to known relationships for phosphorus, chlorophyll and water clarity in lakes (Figures 11a and 11b), Stafford Pond values fall within the expected range. Average chlorophyll concentration is almost exactly what the linear relationship with phosphorus level would predict, while the water clarity is near the low end of the possible range associated with the given phosphorus level. Dominance by small celled phytoplankton and additional turbidity from non-algal sources (incoming sediment, resuspension of fine organic particles by wind or waterfowl) is the expected cause of the lower than average water clarity.

Considering the range of possible conditions (Figures 11a and 11b), chlorophyll levels could increase substantially with additional loading, but water clarity cannot decrease much more. On the other hand, small decreases in loading and phosphorus level could yield substantial improvement in water clarity. Even without a major change in loading, there is appreciable room for improved water clarity if the causative agents aside from high nutrient levels can be controlled.

BIOLOGICAL CHARACTERISTICS

Fecal Bacteria

Results of fecal coliform and fecal streptococcus monitoring are presented in Table 18 and 19. Fecal coliform and fecal streptococcus are not harmful by themselves, but are indicators of contamination from animal and/or human wastes. Values of fecal coliform and fecal streptococcus recorded during dry weather were generally low (<100/100 mL) at all sites except SP5b, where values were consistently high (>500/100 mL). A high fecal streptococcus value was also recorded at SP1a on 4/17/96. This value may have been a result of exceedingly high inputs from SP5b and/or waterfowl using this area of the pond. Values recorded during wet weather ranged from low to high. However, high concentrations were documented at all wet weather sampling locations on at least one date, with the exception of SP8 and SP10. Values were either low or moderate at SP8, and bacteria were not monitored at SP10 as this was a direct precipitation sample. In conclusion, most striking were the values at SP5b, which often exceeded 10,000/100 mL even during dry weather. Dairy farm inputs are strongly indicated, as bacterial levels at SP5a were low.

The fecal coliform:fecal streptococcus ratio can often indicate whether bacterial pollution is of human or non-human origin. Ratios >4 are mainly human wastes, whereas ratios <1 are mainly non-human animal wastes. Ratios between 1 and 4 are inconclusive, and differential die-off can skew ratio results except where bacterial concentrations are high and the sample is collected near the source. Results were generally inconclusive at all sites, probably a result of differential bacterial die-off. The range of encountered conditions is exemplified by Table 20. The ratios for even station SP5b, with an obvious nearby source of non-human fecal bacteria, did not consistently indicate non-human sources.

Table 18. Results of Fecal Coliform Monitoring in Surface Waters at Stafford Pond (1996).

1					Fecal Colif	Fecal Coliform (#/100 mL)	m()				
Sanpling	,	1	ć	Š	CDE	CDSh	CDK	Sps	6dS	SP11	SP12
Date	SP1a	SP2	SF3	470	SEJS	SESD	0.10				
Dry Weather:						((;				
21-Feb	⊽	⊽	⊽	⊽		2,300	√ '				
19-Mar	-	7	Ś	⊽		1,300					
17-Anr	470			6		7,300	∞				
14.Mav	2			3	21	009	7				
20 May	-			⊽		41,000	9			⊽	⊽
27-Iviay 10 Jun	. 55			5		23,000	64				
10-Jun	3 ▽			∇		3,400	17				
27-Juii 17 L.1	, (⊽		6,400	78				
Int-/1	7 -			· 7							
30-Jul	-		,	7 .							
8-Aug	⊽		_	4							
22-Aug	√			9							
5-Sen	7		7	4							
30-Sen	V.			2		41,000	12				
30-3ch	54			31	<100	2,300	5				
72-67	• 1										
Moon (geometric)	4	,	2	m	46	5,500	7			∇	⊽
Minimum	∀	∀	7	⊽	21	009	⊽			⊽	⊽
Manimum	0.27	~	v	31	50	41,000	78			۲ <u>۰</u>	⊽
Maximum	?	1)	5) i						
Wet Weather:									,		
20-Mar						51,000	-		7		
16-Apr								20			
24-Jul							940		42,000		
12-Sep						3,100	440	64	50,000		
18-Sep		·				49,000					
Moon (goometric)						19,800	75	57	1,600		
Minimum						3,100		20	2		
Maximum						51,000	940	64	50,000		
TAT CONTINUES OF THE PARTY OF T											

Table 19. Results of Fecal Streptococcus Monitoring in Surface Waters at Stafford Pond (1996).

				9	Stront	Total Strantococcus (#/100 ml.)	() m ()				
Sampling	Š	č	c.b.2	ras	cal Sticput SP5a	SPSh	SP6	SP8	SP9	SP11	SP12
Date	SPIa	SF2	SF3	*1c	DT 70						
Dry Weather:							7				
21-Feb	₹	-	-	⊽		7,600	7				
10 Mar	7	7	2	√		740	⊽				
17 A ==	3 500			∞		41,000	34				
idw-/1	777			~	⊽	140	7				
14-May	7 :			; ;	•	3.400	5			⊽	⊽
29-May	⊽			7		אלי היי	927				
10-Jun	13			⊽		2,500	420				
27-Inn	~			13		3,500	2				
17-Inl	7			⊽		3,000	100				
1,-Jui	~										
30-901	7 `		c	ı V							
8-Aug	9		ν.	· •							
22-Aug	-		_	9							
5-Sen	4		♡	7							
20.000	▽					50,000	91				
on-sep	, (7	001/	10,000	2				
29-Oct	^			7	001/	7,000	1				
Moon (goometrie)	γ-		2	2	10	4,000	13			∇	₹
Mean (Scomen of	' 7	-	7	7	7	140	<u>~</u>			⊽	⊽
Minimun	7	1	7 '	; ;	• (000	000			7	V
Maximum	3,500	2	G.	13	00	20,000	07+			;	;
Wet Weather:							•				
20-Mar						1,900	7	,	25		
16-Apr							1	410			
24-In							280		42,000		
12-Sen						3,100	320	4	50,000		
10 01						38,000					
ro-sep						n .					
Mean (oeometric)						6,100	72	40	6,500		
Minimum						1,900	2	4	130		
Minimum						38,000	580	410	50,000		
Maximum											

Table 20. Fecal Coliform: Fecal Streptococcus Ratios for Several Sampling Locations at Stafford Pond (1996).

Sampling Location	Date	Weather	FC:FS ratio
SP5b	21-Feb	Dry	0.9
SP5b	19-Mar	Dry	1.8
SP5b	17-Apr	Dry	0.2
SP5b	14-May	Dry	4.3
SP5b	29-May	Dry	12.1
SP5b	10-Jun	Dry	9.2
SP5b	27-Jun	Dry	1.0
SP5b	17-Jul	Dry	2.1
SP5b	30-Sep	Dry	0.8
SP5b	29-Oct	Dry	0.1
SP5b	20-Mar	Wet	26.8
SP5b	12-Sep	Wet	1.0
SP5b	18-Sep	Wet	1.2
SP6	24-Jul	Wet	1.6
SP6	12-Sep	Wet	1.4
SP9	24-Jul	Wet	1.0
SP9	12-Sep	Wet	1.0

Phytoplankton

Floating algae, or phytoplankton, are the primary manifestation of overfertilization in Stafford Pond. Samples are collected and analyzed by the Stone Bridge Fire District on a regular basis, but for this study samples were collected from two stations (SP-1a and SP4) and analyzed by Fugro East (ENSR) personnel. Estimates of phytoplankton density as cells/mL for Stafford Pond are presented in Table 21a and Figure 12a. Estimates of phytoplankton biomass as ug/L for Stafford Pond are presented in Table 21b and Figure 12b.

The phytoplankton of Stafford Pond are not especially rich (number of taxa); only 32 genera were encountered in the entire sample collection, with an individual sample range of 4 to 15 genera. Diversity and evenness (distribution of cells among taxa) were highly variable, with a range of 0.01 to 0.92, suggesting unstable conditions. Total cell counts ranged from 900 to 307260 cells/mL, with counts over 40,000 cells/mL throughout March and April and again in August and September. Biomass estimates ranged from 384 to 40,110 ug/L, with two distinct peaks as with the cell counts; the spring peak included mainly the diatom *Asterionella* and had biomasses of 8807 to 10,455 ug/L, while the summer peak consisted mainly of the bluegreen Aphanizomenon and had biomasses of 6659 to 40,110 ug/L.

There was generally close agreement between the surface station (SP1a) and the water intake station (SP4) for taxonomic composition, relative abundance, cell counts and biomass, although there was not complete agreement. Aside from the inherent variability in algal counts (±10% is about the minimum expected difference), buoyancy of bluegreens and sinking of diatoms during periods of calm largely account for the observed differences.

The spring pulse of the diatom Asterionella is a typical occurrence at Stafford Pond and other fertile southern New England lakes. High available nutrients (including silica as well as nitrogen and phosphorus) upon ice out, coupled with increased light but continued cold temperatures, promotes such diatom blooms. Also present during this time are other cold water tolerant forms such as the diatom Fragilaria, the golden algae Mallomonas and Synura, and the green alga Sphaerocystis.

There is a clear water period in late May and early June, also typical for eutrophic temperate zone lakes. This period is produced by a combination of factors, including warming temperatures, changing nutrient levels and ratios, and increased grazing by zooplankton. *Asterionella* persists, but at greatly reduced levels. A few grazer-resistant greens such as *Elakatothrix*, *Oocystis* and *Pediastrum* appear, as do the motile golden algae *Chrysococcus* and *Dinobryon* and several other transient algal forms, but densities are generally low (<1000 ug/L) into mid-June.

In late June and early July, bluegreens typically begin to dominate eutrophic temperate zone lakes. In Stafford Pond, blooms of *Anabaena* have been documented in the past and such a bloom was in its early stages in late June of 1996 when the Stone Bridge Fire District applied copper sulfate to the pond. The timing of this treatment was appropriate, as production appeared to be in the exponential growth phase but actual biomass was not yet over 2000 ug/L. However, limits on the dosage and frequency of such treatments does not always allow a complete kill, and the release of nutrients from decaying bluegreens generally fosters subsequent blooms. A second

Table 21a. Phytoplankton Density in Stafford Pond (1996).

	1	1		ELLS/ML)						
	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford		Stafford	Stafford #1a	Stafford #4
	#1a	#4 2/21/96	#1a 3/19/96	#4 3/19/96	#1a 4/17/96	#4 4/17/96	#1a 5/14/96	#4 5/14/96	#1a 5/29/96	5/29/96
TAXON	2/21/96	2/2/196	3113130	3/ 13/30	4111130	4/11/20	0,1425	0/14/00	0.120.00	
BACILLARIOPHYTA	 									
Achnanthes	0	0	0	0	0	0	0	0	0	120
Asterionella	1512	2064	41200	46000	40656	46170 90	1980	1080	180 180	120
Fragilaria	294	192 0	500	700	168	90	0	0	100	
Gomphonema Navicula	0	48		50	42	45	45	ő		0
Nitzschia	ŏ	96	O	50	0			Ö		0
Tabellaria	0	Ö	0	0	0	0	Ö	Ō	0	0
CHLOROPHYTA		0	- 0	0	0	0	Ö	. 0	0	0
Ankistrodesmus Coelastrum	- 0	0	<u></u>	0	ŏ	ő				O
Cosmarium	- 6	0	0	0	0	0	0	30		
Crucigenia	ō	0	Ö	0	0			0		
Elakatothrix	84	0	0	0	Ö			0		
Kirchneriella	0	0	Ó	Ö	0			0		60
Oocystis	0	0	0	0	0					
Paulschultzia	0	0	0	0	0			- ö		
Pediastrum Secondos musicos	- 0			0	- 6			1920		
Scenedesmus Schroederia	+ 5			Ö	ō	0	0	ō	Ō	0
Sphaerocystis	336	576	2400	2800	3024	3240	1800	3120		
Staurastrum	0	0	50	0	0			0	0	
Treubaria	0	0	0	0	Ö	0	0	0	ō	ļ
									 -	
CHRYSOPHYTA	ō	96	50	0			180	120	225	360
Chrysococcus "		96	- 30	- 0	0			<u></u>		1 0
Chrysosphaerella	 	0		0	0			0	270	
Dinobryon Mallomonas	462	1248		300	0	0				
Synura	168	96	0	0	0	0	0	0	0	0
				·						
CRYPTOPHYTA						45	45	60	90	60
Cryptomonas	0	0	50	50	<u> </u>	43	1 43	- 00	1 30	
AVANDRIIVTA	- 		-	 		 	`		†	
CYANOPHYTA Anabaena	0	- 0	0	0	0	Ó	0	0	0	
Aphanizomenon	- - 0			0	0	0	0	0	0	
r-prantzer/octor						<u> </u>			ļ. 	<u> </u>
EUGLENOPHYTA						ļ			23	
Trachelomonas	0	0	50	50	0	0	0	<u> </u>	23	
		 	 		ļ. ——	 	-	ļ		
PYRRHOPHYTA Ceratium	 0		- 6	a	- c	0	0	O	0	
Peridinium	 				0	C	0	0	0) (
1 es roiman							<u> </u>	ļ	<u> </u>	
RHODOPHYTA			ļ .			ļ	<u> </u>		<u> </u>	
		ļ	ļ	ļ		 	 	 	 	+
			 	 	<u> </u>	 	 	 	 	
SUMMARY STATISTICS			 	 	 	` 	1	 	 	
DENSITY (#ML) BACILLARIOPHYTA	1806	2400	41700	46800	40866	46305	2025	1080	360	
CHLOROPHYTA	420							5070		
CHRYSOPHYTA	630	1536	150							
CRYPTOPHYTA	0									
CYANOPHYTA	0									
EUGLENOPHYTA	0		50				0 0			
PYRRHOPHYTA	0									
RHODOPHYTA TOTAL PHYTOPLANKTON	2856									
TOTAL PRITOPLANKION	2030		1 ,,,,,,	1	1	T			I	
TAXONOMIC RICHNESS		1								
BACILLARIOPHYTA	2		1 2				3			
CHLOROPHYTA	2						1 2	3		2
CHRYSOPHYTA			1 2) 2 1			
CRYPTOPHYTA			3 - 3				<u> </u>			
CYANOPHYTA EUGLENOPHYTA			' 				3			1
PYRRHOPHYTA	- 6) (5 6) (5
RHODOPHYTA	 		5 () ())) (
TOTAL PHYTOPLANKTON			9 3	3	9	4	5	7	5 6	3
						-				
S-W DIVERSITY INDEX	0.60		5 0.14 3 0.19							3 0.6

Table 21a. Continued.

	PHYTOPL	ANKTON C	ENSITY (C	ELLS/ML)						
	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford
	#1a	#4	#1a	#4	#1a	#4	#1a	#4	#1a	#4
TAXON	6/10/96	6/10/96	6/27/96	6/27/96	7/16/96	7/16/96	7/30/96	7/30/96	8/8/96	8/8/96
BACILLARIOPHYTA	<u>-</u> -									
Achnanthes	0	0	0	0	0		0			
Asterionella	288	180	72	50	0		0	0	0	0
Fragilaria	0	0	0	25	45	0	2700	2970 0	0	600
Gomphonema	O	0	Ö	0			0		0	0
Navicula	Ö	0	0	0 25		45	0		48	
Nitzschia	0	0	24				Ö	0	70	
Tabellaria	0	Ų.	U							
ALII ARABIO/TA						 				
CHLOROPHYTA Ankistrodesmus	- 0	0	ő	0	0	<u>0</u>	0	33	0	Ö
Ankistrogesmus Coelastrum	0			100		1080	10080	7920	11520	8000
Cosmarium	Ó	Ó	0	0	0	0				
Crucigenia	0	0	. 0	0	0					
Elakatothrix	36	36	0			0				
Kirchneriella	0	0	0						96	
Oocystis	0								96	
Paulschultzia	0								96	
Pediastrum	0								96	100
Scenedesmus	144	144					1080		. 0	
Schroederia	36	36							48	
Sphaerocystis	0			150					0	
Staurastrum	0									
Treubaria	0	0	.0	C	0	0	0	0	48	
-UBY CONTYTA						 		†		1
CHRYSOPHYTA Chrysococcus	2448	3024	288	200	1 0	0	0	0	0	
Chrysosphaerella	0							0	C	
Dinobryon	- 0				5 0					
Mallomonas	0	Ö	0) (
Synura	0	0	0	() C	0	0	0	C	0
	ļ	<u> </u>	ļ	ļ	<u> </u>		-			 -
CRYPTOPHYTA		20	24	25	225	45	45	33		0
Cryptomonas	36	36	24		22-	40		- 33	 	
	ļ	ļ	 	<u> </u>	 	 	 	 	 -	
CYANOPHYTA	- 0	C	6000	5250) (1 0	0	33600	1000
Anabaena	1 0									
Aphanizomenon	·	1	1	-			† · · · ·	<u> </u>		1
EUGLENOPHYTA	+	├	 	 		1	<u> </u>			T
Trachelomonas	36	72	48	50	0) 90) (33	96	50
Tradite/of/lasted										
PYRRHOPHYTA	1		T				<u> </u>			
Ceralium	1	7	12) (
Peridinium	C) () ()) () ()	0		0
	1	J	ļ <u> </u>	 	 	 		-	ļ	
RHODOPHYTA	ļ	<u> </u>	 	<u> </u>			 	 	 	
	 	<u> </u>	 	 		 			 	
CINCOLARY CTATICTICS	 	 	+	+	 	+	+	 		+
SUMMARY STATISTICS	 	 	 	 		 		+		
DENSITY (#ML)	288	180	96	10	9	90	2700	2970	48	650
BACILLARIOPHYTA	216									
CHLOROPHYTA CHRYSOPHYTA	2448) (0
CRYPTOPHYTA	36				5 22			33		
CYANOPHYTA			6000			0 0		990		
EUGLENOPHYTA	36					90				
PYRRHOPHYTA			7 12					5 7		
RHODOPHYTA	7 7)								
TOTAL PHYTOPLANKTON	3024	353	5 6972	2 623	8 355	5 3600	16430	13702	64968	11200
						_		 -	-	
TAXONOMIC RICHNESS		4	4	1	3	2	2	1	1	1 2
BACILLARIOPHYTA								3		5
CHLOROPHYTA								<u> </u>		i č
CHRYSOPHYTA								1		
CRYPTOPHYTA								1		2
CYANOPHYTA						-		0		
PYRRHOPHYTA								1		1
RHODOPHYTA								0 () (
TOTAL PHYTOPLANKTON			8 1				9 1		1	2 1
Talver III ia Pulitian		· · · · ·		<u> </u>						
S-W DIVERSITY INDEX	0.3									
EVENNESS INDEX	0.3	9 0.3	1 0.2	7 0.3	0.6	0.6	1 0.5	5 0.53	3 0.4	3 0.4

Table 21a. Continued.

	PHYTOPL	ANKTON D	ENSITY (C	ELLS/ML)				
	Stafford	Stafford #4	Stafford #1a	Stafford #4	Stafford #1a	Stafford #4	Stafford #1a	Stafford #4
TAXON	#1a 8/22/96	8/22/96	9/4/96	9/4/96	9/30/96	9/30/96	10/29/96	10/29/96
BACILLARIOPHYTA						_		
Achnanthes	0	0	14	12	0	0 60	50	0 60
Asterionella Fragilaria	0	288	0	24	0	120	0	60
Gomphonema	0	0	ő	Ö	0	O	0	30
Navicula	18	24	14	48	0	0	50	60
Nitzschia	36	144	Ö	24	0	0	0	0
Tabellaria	0	0	14	12	0	0	50	60
CHLOROPHYTA								
Ankistrodesmus	Ö	48	14	12	0	60	50	60
Coelastrum	288	384	56	288	400	480	400	240
Cosmarium	36	48.	14	0	0	0	0	. 0
Crucigenia	0	0	0	0	0	0		0
Elakatothrix	0	0	0	0	0	0	0	0
Kirchneriella	0	0	0	0	0	0 240	200	240
Oocystis Paulschultzia	288	96	28	36	0	240		240
Pauiscnuitzia Pediastrum	200	0	0	0	Ö	0		ō
Scenedesmus	144	768	280	336	600	240	200	240
Schroederia	36	48	0	0	0	0		0
Sphaerocystis	0	0	56	96	0	0		120
Staurastrum	36	48	0	12	25	0		0
Treubaria	0	0	0	0	0	0	<u> </u>	- 0
OUDVCOBUVTA								
CHRYSOPHYTA Chrysococcus		ō	0	0	0	0	0	0
Chrysosphaerella	 		0			- ō	0	0
Dinobryon	ō		0	0	0	0	Ö	0
Mallomonas	0	48	14	0	0	0		Ö
Synura	0	0	0	0	0	0	0	0
		L						
CRYPTOPHYTA		<u> </u>	0	24		0	5500	4740
Cryptomonas	0	0	U	24		<u> </u>	3500	4/40
CYANOPHYTA					 		 	-
Anabaena	1 0	0	Ö	0	ő	0	0	0
Aphanizomenon	111600		168000	69600	47500	306000	0	0
EUGLENOPHYTA								60
Trachelomonas	0	96	42	36	150	60	0	. 60
BURBUUTA		 	ļ			 	 	
PYRRHOPHYTA Ceralium	4	0	0	0	10	0	0	0
Peridinium								0
r enoundin	 					i		
RHODOPHYTA		L						
		<u> </u>	<u> </u>	-	 	-		
SUMMARY STATISTICS		1		 	 	 		
DENSITY (#ML) BACILLARIOPHYTA	54	456	42	120	0	180	150	270
CHLOROPHYTA	828							
CHRYSOPHYTA	020							
CRYPTOPHYTA	ŏ			24				4740
CYANOPHYTA	111600	148800	168000					
EUGLENOPHYTA	a	96						
PYRRHOPHYTA	4							
RHODOPHYTA	112486							
TOTAL PHYTOPLANKTON	112480	100040	100040	10372	40000	337200	0500	3370
TAXONOMIC RICHNESS	 	†	<u> </u>			 	1	
BACILLARIOPHYTA	2	3	3			2		
CHLOROPHYTA	- 6	7						
CHRYSOPHYTA		1						
CRYPTOPHYTA	(
CYANOPHYTA						1		
EUGLENOPHYTA	(
PYRRHOPHYTA								
RHODOPHYTA TOTAL PHYTOPLANKTON	10							
TOTAL THE TOT LANGUAGE	 	1	<u> </u>	1	†	 	† 	· · · · · · ·
S-W DIVERSITY INDEX	0.03	0.04	0.01	0.04	0.06	0.01		
EVENNESS INDEX	0.03	0.04	0.01	0.04	0.08	0.02	0.33	0.38

BACILLARIOPHYTA EUGLENOPHYTA CHLOROPHYTA CHRYSOPHYTA **PYRRHOPHYTA** CRYPTOPHYTA RHODOPHYTA CYANOPHYTA 96/67/01 96/67/01 96/02/6 96/02/6 96/7/6 PHYTOPLANKTON CELLS/ML IN STAFFORD POND (First bar in each pair is SP-1a, second bar is SP-4) 96/7/6 96/22/8 96/22/8 96/8/8 96/8/8 96/08/7 96/02// 96/91/4 DATE 96/91/2 96/27/9 96/27/9 96/01/9 96/01/9 96/6Z/9 96/6Z/9 96/71/9 96/71/9 96/11/7 96/11/7 96/6 L/E 96/6 1/8 96/17/7 0 -96/12/7 100000 T 40000 30000 20000 10000 00006 50000 70000 00009 80000 CETT2/WT

Figure 12a. Phytoplankton Density in Stafford Pond (1996).

Table 21b. Phytoplankton Biomass in Stafford Pond (1996).

	PHYTOPL	ANKTON B	IOMASS (U	G/L)						
	Ct-st-nd	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford
	Stafford #1a	#4	#1a	#4	#1a	#4	#1a	#4	#1a	#4
TAXON	2/21/96	2/21/96	3/19/96	3/19/96	4/17/96	4/17/96	5/14/96	5/14/96	5/29/96	5/29/96
BACILLARIOPHYTA		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Achnanthes	0.0 302.4	412.8	8240.0	9200.0	8131.2	9234.0	396.0	216.0	36.0	24.0
Asterionella	88.2	57.6	150.0	210.0	50.4	27.0	0.0	0.0	54.0	0.0
Fragilaria	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Gomphonema Navicula	0.0	24.0	0.0	25.0	21.0		22.5	0.0	0.0	0.0
Nitzschia	0.0	76.8	0.0	40.0	0.0	0,0	0.0	0.0	0.0	0.0
Tabellaria	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	ļ							- <u>-</u> -		<u> </u>
CHLOROPHYTA Ankistrodesmus	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Coelastrum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cosmarium	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24.0	0.0	0.0
Crucigenia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Elakatothrix	8.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0
Kirchneriella	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
Oocystis	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		24.0
Paulschultzia	0.0	0.0	0.0	0.0	0.0	0.0		0,0	0.0	0.0
Pediastrum	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0
Scenedesmus	0.0	0.0		0.0	0.0	0.0		192.0	9.0	24.0
Schroederia	0.0	0.0	0.0	0.0	0.0	0.0		624.0		0.0
Sphaerocystis	67.2	115.2	480.0 40.0	560.0 0.0	604.8			0.0		0.0
Staurastrum Treubaria	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0
CHRYSOPHYTA Chrysococcus	0.0	9.6	5.0	0.0	0.0	0.0	18.0	12.0	22.5	36.0
Chrysosphaerella	0.0		0.0	0.0	0.0			0.0	0,0	0.0
Dinobryon	0.0	0.0	0.0	0.0	0.0	0.0	135.0	0.0	810.0	180.0
Mallomonas	231.0	624.0	50.0	150.0	0.0	0.0	0.0	0.0		0.0
Synura	134.4	76.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ODVOTODI NAMA				 			 			
CRYPTOPHYTA	0.0	0.0	10.0	10.0	0.0	9.0	9.0	12.0	81.0	96.0
Cryptomonas	0.0	0.0	10.0	10.0	0.0	0.0	5.5		3,112	
CYANOPHYTA										0.0
Anabaena	0.0				0.0					0.0
Aphanizomenon	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
EUGLENOPHYTA		L						0.0	22.5	0.0
Trachelomonas	0.0	0.0	50.0	50.0	0.0	0.0	0.0	0.0	22.5	0.0
PYRRHOPHYTA			<u> </u>							
Ceratium	0.0				0.0	+				0.0
Peridinium	0.0	0.0	0.0	210.0	0.0	0.0	0.0	0.0	0.0	0.0
RHODOPHYTA										
SUMMARY STATISTICS BIOMASS (UG/L)		 		 	1	-	 	 	-	
BACILLARIOPHYTA	390.6	571.2	8390.0	9475.0	8202.6	9283.5	418.5	216.0	90.0	24.0
CHLOROPHYTA	75.6	-					4			
CHRYSOPHYTA	365.4						153.0			
CRYPTOPHYTA	0.0		10.0	10.0	0.0	1			+	
CYANOPHYTA	0.0									
EUGLENOPHYTA	0.0				 					
PYRRHOPHYTA	0.0				·					
	0.0	0.0	0.0	0.0	0.0	0.0	0.0			

Table 21b. Continued.

	PHYTOPLA	ANKTON B	IOMASS (U	G/L)					<u> </u>	
	1,,,,,,									
	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford
	#1a	#4	#1a	#4	#1a	#4	#1a	#4	#1a	#4
TAXON	6/10/96	6/10/96	6/27/96	6/27/96	7/16/96	7/16/96	7/30/96	7/30/96	8/8/96	8/8/96
BACILLARIOPHYTA	_				-	-				
Achnanthes	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
Asterionella	57.6	36.0	14.4	10.0	0.0	9.0	0.0	0.0		0.0
Fragilaria	0.0	0.0	0.0	7.5	13.5	0.0	810.0	891.0		180.0
Gomphonema	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Navicula	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Nitzschia	0.0	0.0	19.2	20.0	36.0	36.0	0.0	0.0		40.0
Tabellaria	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
					ļ					
CHLOROPHYTA								3.3	0.0	0.0
Ankistrodesmus	0.0	0.0	0.0	0.0 20.0		0.0 216.0	0.0 2016.0	1584.0		
Coelastrum	0.0	0.0	0.0	0.0		0.0	0.0	0.0		
Cosmarium	0.0	0.0		0.0		0.0	18.0	13.2		0.0
Crucigenia	0.0 3.6	3.6	0.0	0.0		0.0	0.0	0.0		
Elakatothrix	0.0	0.0	0.0	0.0		0.0	0.0	0.0		10.0
Kirchneriella	0.0	0.0	19.2	0.0	0.0	0.0	72.0	52.8		20.0
Oocystis	0.0	0.0	38.4	80.0	144.0	36.0	0.0	0.0		40.0
Paulschultzia Pediastrum	0.0	0.0	9.6	0.0		0.0	18.0	26.4	19.2	0.0
Scenedesmus	14.4	14.4	9.6	10.0		180.0	108.0	52.8	0.0	10.0
Schroederia	90.0			62.5		112.5	0.0	0.0		
Sphaerocystis	0.0		38.4	30.0	18.0	72.0	144.0	158.4		
Staurastrum	0.0	0.0	0.0	0.0			0.0			
Treubaria	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.6	0.0
CHRYSOPHYTA	<u> </u>		_							
Chrysococcus	244.8	302.4		20.0			0,0			
Chrysosphaerella	0.0			0.0						
Dinobryon	0.0	0.0		75.0			0.0			
Mallomonas	0.0	0.0		0.0						<u> </u>
Synura	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CRYPTOPHYTA										
Cryptomonas	7.2	7.2	4.8	5.0	45.0	9.0	9.0	6.6	0.0	0.0
DVANORUNTA					 	 		-	<u> </u>	
CYANOPHYTA Anabaena	0.0	0.0	1200.0	1050.0	0.0	0.0	0.0	0.0	6720.0	200.0
Aphanizomenon	0.0						<u> </u>		2496.0	130.0
						ļ —		 -		
EUGLENOPHYTA Trachelomonas	36.0	72.0	151.2	50.0	0.0	90.0	0.0	33.0	96.0	50.0
DVDDUODUVTA		 	 		 -			-		
PYRRHOPHYTA	0.0	125.3	208.8	217.5	0.0	0.0	78.3	114.8	417.6	2610.0
Ceratium Peridinium	0.0									
RHODOPHYTA				-						
								ļ		
SUMMARY STATISTICS			 	 	-	 				
BIOMASS (UG/L) BACILLARIOPHYTA	57.6	36,0	33.6	37.5	49.5	45.0	810.0	891.0	38.4	220.0
CHLOROPHYTA	108.0								2539.2	1680.0
CHRYSOPHYTA	244.8									
CRYPTOPHYTA	7.2									
CYANOPHYTA	0.0				0.0	0.0	175.5			
EUGLENOPHYTA	36.0				0.0	90.0				
PYRRHOPHYTA	0.0								,	+
RHODOPHYTA	0.0									
TOTAL PHYTOPLANKTON	453.6	650.9	1814.4	1657.5	729.0	760.5	3448.8	3065.0	12307.2	4890.0

Table 21b. Continued.

	PHYTOPLA	NKTON BI	OMASS (U	G/L)				
	C1-#1	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford
	Stafford			#4	#1a	#4	#1a	#4
	#1a 8/22/96	#4 8/22/96	#1a 9/4/96	9/4/96	9/30/96	9/30/96	10/29/96	10/29/96
TAXON	8/22/96	8/22/30	3/4/30	314130	3/30/30	3/30/30	10/23/30	10/25/55
BACILLARIOPHYTA								0.0
Achnanthes	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0
Asterionella	0.0	0.0	2.8	0.0	0.0	12.0	10.0	12.0
Fragilaria	0.0	86.4	0.0	7.2	0.0	36.0	0.0	18.0
Gomphonema	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30.0
Navicula	9.0	12.0	7.0	24.0	0.0	0.0	25.0	30.0
Nitzschia	28.8	115.2	0.0	19.2	0.0	0.0	0.0	0.0
Tabellaria	0.0	0.0	11.2	9.6	0.0	0.0	40.0	48.0
CHLOROPHYTA								
Ankistrodesmus	0.0	4.8	1.4	1.2	0.0	6.0		6.0
Coelastrum	57.6	76.8	11.2	57.6	80.0	96.0	80.0	48.0
Cosmarium	28.8	38.4	11.2	0.0	0.0	0.0	0.0	0.0
Crucigenia	0.0	0.0	0.0	0.0	0.0	0.0		0.0
Elakatothrix	0.0	0.0	0.0	0.0	0.0	0.0		
Kirchneriella	0.0	0.0	0.0		0.0	0.0		
Oocystis	0.0	0.0	0.0	0.0	0.0	96.0	80.0	96.0
Paulschultzia	115.2	38.4	11.2	14.4	0.0	0.0	0.0	0.0
Pediastrum	0.0	0.0	0.0	0.0	0.0	0.0		0.0
Scenedesmus	14.4	76.8	28.0	33.6	60.0	24.0		24.0
Schroederia	90.0	120.0	0.0	0.0	0.0	0.0	0.0	0.0
Sphaerocystis	0.0	٠٥.0	11.2	19.2	0.0	0.0	0.0	
Staurastrum	28.8	38.4	0.0	9.6	20.0	0.0	0.0	0.0
Treubaria	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0
CHRYSOPHYTA				<u> </u>				
Chrysococcus	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Chrysosphaerella	0.0	0.0	0.0		0.0	0.0	0.0	0.0
Dinobryon	0.0	0.0			0.0	0.0	0.0	. 0.0
Mallomonas	0.0	24.0				0.0	0.0	0.0
Synura	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CRYPTOPHYTA			ļ		ļ			
	0.0	0.0	0.0	4.8	0.0	0.0	1310.0	1116.0
Cryptomonas	0.0	0.0	0.0	4.0	0.0			
CYANOPHYTA						0.0		0.0
Anabaena	0.0					1		
Aphanizomenon	14508.0	19344.0	21840.0	9048.0	6175.0	39780.0	0.0	0.0
EUGLENOPHYTA				<u> </u>				
Trachelomonas	0.0	96.0	42.0	36.0	150.0	60.0	0.0	60.0
PYRRHOPHYTA		 	 	-				
Ceratium	62.6	0.0	0.0	0.0	174.0	0.0	0.0	0.0
Peridinium	0.0		0.0	25.2	0.0	0.0	0.0	0.0
RHODOPHYTA			ļ					
SUMMARY STATISTICS		 	1			-		
BIOMASS (UG/L)				1				
BACILLARIOPHYTA	37.8	213.6	21.0	61.2	0.0	48.0	75.0	138.0
CHLOROPHYTA	334.8					222.0	185.0	198.0
CHRYSOPHYTA	0.0	+					0.0	0.0
CRYPTOPHYTA	0.0					0.0	1310.0	1116.0
CYANOPHYTA	14508.0			-			0.0	0.0
EUGLENOPHYTA	0.0							60.0
PYRRHOPHYTA	62.6							
RHODOPHYTA	0.0	~ -						
TOTAL PHYTOPLANKTON	14943.2							

BACILLARIOPHYTA EUGLENOPHYTA CHLOROPHYTA **PYRRHOPHYTA** CHRYSOPHYTA CRYPTOPHYTA CYANOPHYTA, RHODOPHYTA 96/67/01 96/62/01 96/08/6 96/08/6 (First bar in each pair is SP-1a, second bar is SP-4) 96/7/6 96/7/6 96/22/8 96/22/8 96/8/8 96/8/8 96/08/4 96/02/4 96/91/4 96/91/7 DATE 96/27/9 96/72/9 96/01/9 96/01/9 96/6Z/9 96/6Z/9 96/71/9 96/71/9 96/11/7 96/11/7 96/6 1/8 96/6 L/E 96/17/7 96/12/2 -0 25000 T 5000 20000 15000 10000 **⊤**/อ∩ั

PHYTOPLANKTON UG/L IN STAFFORD POND

Figure 12b. Phytoplankton Biomass in Stafford Pond (1996).

treatment was conducted two weeks later, and it appears that these two treatments limited algal biomass through mid-July. While copper treatments are a relatively crude means of control with a number of possible and undesirable side effects, it is virtually certain that greater algal biomass would have been experienced earlier in the season without such treatment.

Green algae become dominant during the period of copper treatment, including mainly members of the order Chlorococcales (*Coelastrum*, *Oocystis*, *Paulschultzia*, *Pediastrum*, *Scenedesmus*, *Schroederia* and *Sphaerocystis*), which prefer high N:P ratios, are minimally affected by copper, and are generally resistant to grazing (they have gelatinous sheaths that allow safe passage through zooplankton digestive tracts). Green algal biomass peaked in late July at slightly over 3000 ug/L, enough to be noticeable but not enough to represent a major threat to water treatment or recreation.

In late July the bluegreen *Aphanizomenon* was first noticed. This genus is a major problem species in many lakes. It consists of small (<10 um) barrel shaped cells in a short filamentous form (usually 20-100 cells). In some cases the filaments bind together to form flakes which appear as chopped grass clippings, but in Stafford Pond and many other lakes with limited grazing capacity at the time, the filaments remain solitary.

Aphanizomenon can form heterocysts which fix dissolved nitrogen into forms usable in building proteins and other necessary compounds, much as is done by the root nodules of legumes. This strategy allows growth in nitrogen limited habitats. However, few heterocysts were observed in Stafford Pond Aphanizomenon, suggesting little nitrogen limitation. Aphanizomenon also produces akinetes, or resting cells, which sink to the bottom and re-start the population upon appropriate stimulation at a later time.

Strains of *Aphanizomenon* can also produce nerve toxins which are not removed by filtration. It is not known if the Stafford Pond *Aphanizomenon* is a toxic strain, but the treatment process employed by the Stone Bridge Fire District is among the best for removing any such toxin.

Three other features of Aphanizomenon are noteworthy. It is less temperature sensitive than most bluegreens, rarely beginning a bloom in cold temperatures but often persisting and thriving through the winter under the ice. Additionally, it is buoyant by virtue of gas vesicle in each cell, and will form surface scums in the absence of significant wind mixing. Finally, and very importantly in this case, it is more resistant to copper than most bluegreens. The treatments which controlled *Anabaena* may therefore have hastened the arrival of *Aphanizomenon*.

The late summer *Aphanizomenon* bloom has been a problem in Stafford Pond for at least 6 years, and appears to be intensifying. The logical progression would be for the bloom to persist longer each year, extending into fall or even winter, although the variability induced by weather pattern may obscure any trend for many years. In 1996 the bloom became unstable in September, with concentrations becoming patchy, and was gone by the end of October. The cryptophyte *Cryptomonas* was the most common post-bloom genus; this genus thrives in waters of high

organic carbon content, as would be expected upon die off of an algal bloom. Biomass was much reduced at this time, however, transitioning rapidly from values in excess of 6000 ug/L to levels around 1500 ug/L. The Stone Bridge Fire District has reported no serious algal problems into March of 1997.

Zooplankton

Zooplankton are useful in the assessment of algal dynamics and fish community structure, and were assessed on three dates in 1996. Estimates of zooplankton density and biomass for Stafford Pond are presented in Table 22. The zooplankton assemblage was not very rich, but exhibited moderate to high diversity and evenness. protozoans were virtually absent in our samples, and rotifers were rare, both unusual occurrences in this region. Only two copepod genera were detected, neither at great abundance. Represented Cladocera included *Bosmina, Ceriodaphnia*, and three species of *Daphnia*, as well as the predatory *Leptodora*. Numerical abundance was generally low, although the mid-summer increase in *Daphnia galeata* produced moderate biomass in that one sample. Such a mid-summer abundance is also unusual, since predation by young fish on this favored food is normally most intense at this time. More frequent sampling would be necessary to better assess community dynamics.

The presence of large bodied *Daphnia* (a crustacean form known as a cladoceran) at densities of more than about 10/L and biomasses in excess of about 100 ug/L can produce substantial grazing pressure on algae and aid control of algal biomass. These conditions were approached in the late July sample, but were not achieved in either the May or August samples. It is probable that zooplankton biomasses rose sharply after the May sampling, and that grazing was partly responsible for the clear water period in June. Persistence of *Daphnia* into late July suggests that the grazing pressure from young fish was not substantial until at least that time. Collapse of the *Daphnia* population by late August may have been a combined effect of predation and poor quality food resources (mainly *Aphanizomenon*). *Daphnia* appear to have survived the copper treatments, suggesting that the dose was not excessive, and by late July would have normally laid resting eggs which ensure annual late spring population rejuvenation in this type of habitat.

The mean size of crustacean zooplankton provides and indication of fishery conditions (Mills et al. 1987), with small mean length (<0.5 mm) indicating dominance of the fish community by small planktivores and large mean length (>0.9 mm) suggesting dominance by older, larger fish. This latter condition sounds great for fishing, but may indicate a lack of recruitment for smaller/younger size classes and possible fishery instability. Mean length was approximately 0.5 mm in May and August, but 1.2 mm in July. Further investigation is warranted from a fishery perspective.

Aquatic Vascular Plants

Maps of vascular plant community composition and density are presented in Figure 13a and 13b. Results of the aquatic vascular plant surveys revealed that rooted plant growth was minimal in Stafford Pond. Rooted plants grew only near the periphery of the pond and plant densities did not exceed 25 percent cover or biovolume. Community structure and composition was basically the same between the June and August surveys. Only seven taxa of aquatic vascular plants were documented in the pond. These included *Drapanocladus* sp. (fish moss), *Eleocharis* sp.

Table 22. Zooplankton Density and Biomass in Stafford Pond (1996).

	ZOOPLAN	KTON DENS	ITY (#/L)	ZOOPLANK	TON BIOMA	SS (UG/L)
	Stafford	Stafford	Stafford	Stafford	Stafford	Stafford
TAXON	5/14/96	7/30/96	8/22/96	5/14/96	7/30/96	8/22/96
				8		
PROTOZOA	0.0	0.0	0.0	0.0	0.0	0.0
Ciliophora Mastigophora	0.0	0.0	0.0	0.0	0.0	0.0
Sarcodina	0.0	0.0	0.0	0.0	0.0	0.0
ROTIFERA		0.0	0.0	0.0	0.0	0.0
Keratella	0.1	0.0	0.0	0.0	0.0	0.0
Polyarthra	- 0.7					
COPEPODA						
Copepoda-Cyclopoida						0.0
Mesocyclops	8.0	1.4	0.0	3.4	12.0	U.U
Copepoda-Calanoida	0.0	1.2	0.0	0.0	4.4	0.0
Diaptomus Copepoda-Harpacticoida	0.0	0.0	0.0	0.0	0.0	0.0
Other Copepoda-Adults	0.0	0.0	0.0	0.0	0.0	0.0
Other Copepoda-Addits Other Copepoda-Copepodites	0.0	0.0	0.0	0.0	0.0	0.0
Other Copepoda-Nauplii	0.5	0.3	0.0	1.3	0.8	0.1
	 					
CLADOCERA	5.0	0.0	0.0	9,9	0.0	0.0
Bosmina Ceriodaphnia	0.2	0.2	0.0	0.5	0.4	0.0
Daphnia ambigua	1.5	0.0	0.0	5.8	0.0	0.0
Daphnia galeata	0.0	9.0	0.0	0.0	103.3	0.0
Daphnia pulex	0.0		0.0	0.0	3.9	0.1
Leptodora	0.0	0.1	0.0	0.0	6.6	<u>u.u</u>
OTHER ZOOPLANKTON				*		~
Bryozoa	0.0	0.0	0.0	0.0	0.0	0.0
Chaoboridae	0.0	0.0	0.0	0.0	0.0	0.0
Chironomidae	0.0		0.0	0.0	0.0	0.0
Coelentarata	0.0		0.0	0.0	0.0	0.0
Culicidae	0.0		0.0	0.0	0.0	0.0
Eubranchiopoda Gastrotrichia	0.0		0.0	0.0	0.0	
Hydracarina	0.0		0.0	0.0	0.0	
Mysidacea	0.0		0.0	0.0		
Nematoda	0.0		0.0	0.0		
Ostracoda	0.0	0,0	0.0	0.0	0.0	0.0
			 -			
		 	 	**		
SUMMARY STATISTICS				8		
DENSITY				·	- 20	
PROTOZOA	0.0			0.0		
ROTIFERA	0.1			4.7		
COPEPODA CLADOCERA	6.7		700	16.3		
OTHER ZOOPLANKTON	0.0			0.0	0.0	0.0
TOTAL ZOOPLANKTON	8.1	12.5	0.1	21.0	131.6	0.2
		<u> </u>				
TAXONOMIC RICHNESS		0	 			
PROTOZOA	2			**************************************		<u> </u>
ROTIFERA COPEPODA				<u> </u>		
CLADOCERA	3	3 4	2	*		
OTHER ZOOPLANKTON				<u> </u>	 	
TOTAL ZOOPLANKTON	7	7 7	7	 	 	-
S-W DIVERSITY INDEX	0.51	0.42	0.80			
EVENNESS INDEX	0.61				1	
E TENTILOG HIDEA		1	1			
	.t		0.43			

Rhode Island Department
Of Environmental Management

Legend:

Ca = Callitriche sp.
Dr = Drepanaciadus
Dv = Decodon verticillatus
El = Eleocharis sp.
Er = Eriocaulon sp.
Gn = Gratiola neglecta
Nj = Najas sp.

Aquatic Macrophyte Community Composition In Stafford Pond (1996) Figure 13a

FUGRO

June 1996

Job No. 16-16-9144

(spikerush), Gratiola neglecta (hedge hyssop), Callitriche sp. (starwort), Decodon verticillatus (swamp loosestrife), Najas sp. (waterweed), and Eriocaulon sp. (pipewort) All seven taxa are native to New England and only one (Najas sp.) is sometimes considered a nuisance.

Light and substrate factors combine to severely limit rooted plant growth in Stafford Pond. Low light from algal bloom induced turbidity reduces the maximum depth at which rooted plants can grow, but even if the water was quite clear there would be limited growth on the rather rocky pond bottom.

Fish

The fish community of Stafford Pond is typical of many warm water New England lakes. Expected species composition is as follows: bluegill (Lepomis macrochirus), pumpkinseed (Lepomis gibbosus), smallmouth bass (Micropterus dolomieui), largemouth bass (Micropterus salmoides), yellow perch (Perca flavescens), white perch (Morone americana), brown bullhead (Ameiurus nebulosus), and stocked trout (Salmonidae). Species composition was derived from Guthrie and Stolgitis (1990) and an unpublished electrofishing survey conducted in June of 1994 by the Rhode Island Department of Environmental Management, Division of Fish and Wildlife.

Seining and gill-netting were conducted during October of 1996 to supplement historic fishery data. Sampling locations are presented in Figure 5. Results are presented in Table 23a through 23e. Only four species of fish were collected during this investigation. Yellow perch and white perch dominated the total catch, with 112 and 49 individuals, respectively. Two rainbow trout (Oncorhynchus mykiss) and 20 young-of-year bluegills were also collected in a single seine haul. Yellow perch ranged in size from 175-248 mm. White perch ranged in size from 278-342 mm. Younger age classes of yellow and white perch were not represented in the total catch. This is either a result of sampling bias (gear selectivity) or inadequate reproduction/recruitment, either of which is possible in this case.

Tumors, fungus, and other external anomalies were not present on any of the collected fish. Review of life history data from Carlander (1950) and Mullan (1973) indicated that length/weight relationships for yellow perch were about average and length/weight relationships for white perch were slightly above average for north central and northeastern regions of the United States. Length/weight relationships provide a general indication of well being, and in the case of Stafford Pond these relationships indicate that individual fish were in relatively good health.

Waterfowl

Approximate numbers of waterfowl recorded during sampling visits to Stafford Pond are presented in Table 24. The greatest numbers of waterfowl were documented during spring and late summer/early fall. All observations were recorded during daylight hours. The majority of waterfowl sitings involved gulls (Larinae), Canada geese (*Branta canadensis*), mallards (*Anas platyrhynchos*), black ducks (*Anas rubripes*), and ruddy ducks (*Oxyura jamaicensis*). Numbers of waterfowl were not insignificant, especially when the birds congregated near the water treatment facility intake, but most birds were sighted near Pelletier point at the outlet end of the lake, and overall density was not large on a regular basis.

Table 23a. Results of the Fish Survey Conducted at Stafford Pond (1996).

	77.4	Time Car	Time Pulled	Duration (hr)	Location	Type of Gill-Net	Type of Set	INCSUIT
	Dale	THE SE	June Lanca			(IC IO III) I	1 44	Toble 13h
	28. Oct	10.02	11:38	1:36	Figure 10	Experimental (1"-2"-3")	_	1 4010 400
-	70-07		13.30	1:00	Figure 10	Experimental (1"-2"-3")	bottom	No Fish
2	28-Oct	06:21	13.30	1.00	· · ·	(#C 00 #E) [=/==== :		Table 430
180	18-0-179-0ct	14:30	10:00	19:30	Figure 10	Experimental (1 -2 -3)		Table 1
. ·	7000	07.11	12.51	1.11	Figure 10	Experimental (1"-2"-3")	bottom	No Fish
4	13O-67	77.11	17.71	1 (01	Gunarimental (14,21,24)	hottom	Table 43d
۲۷	29-Oct	14:00	15:20	1:20	rigure 10	Experimental (1-2-3)		

					•	0 1111	
Seine Haul	Date	Start Time	End Time	Duration (hr)	Location	Type of Seme	Nesult
		000.	11.15	0.45	Figure 10	300'x8' (1/4" mesh)	No fish
¥	28-Oct	10:30	CI:11	C+:0	ar Singi	(H-111
۵	28-Oct	11.50	12:25	0;35	Figure 10	300'x8'(1/4" mesn)	1 able 4 se
q	70-07)				2005.01 (1/4" mach)	No fieb
ر	28-Oct	12:55	13:40	0.45	rigure 10	300 Xo (1/4 IIICSII)	Helf OV
) (10 oc	07.70	15.20	0.40	Figure 10	300'x8' (1/4" mesh)	No fish
a	79-QCI	14.40	12.20		2		

Table 23b. Fish Collected in Gill-Net Set #1.

Common Name	Scientific Name	Length (millimeters)	Weight (grams)
white perch	Morone americana	295	451
white perch	Morone americana	285	379
white perch	Morone americana	280	365
white perch	Morone americana	295	427
white perch	Morone americana	290	405
white perch	Morone americana	295	443
white perch	Morone americana	300	469
yellow perch	Perca flavescens	200	95
yellow perch	Perca flavescens	175	61
yellow perch	Perca flavescens	205	91
yellow perch	Perca flavescens	220	131
yellow perch	Perca flavescens	194	90
yellow perch	Perca flavescens	205	121
yellow perch	Perca flavescens	205	107
yellow perch	Perca flavescens	194	92
yellow perch	Perca flavescens	193	87
yellow perch	Perca flavescens	180	78
yellow perch	Perca flavescens	191	84
yellow perch	Perca flavescens	190	87
yellow perch	Perca flavescens	198	90
yellow perch	Perca flavescens	175	68
yellow perch	Perca flavescens	204	105

A total of 64 yellow perch were caught in the gill-net. Lengths/weights for a sub-sample of 15 fish are provided in the above table.

Table 23c. Fish Collected in Gill-Net Set #3.

Common Name	Scientific Name	Length (millimeters)	Weight (grams)
white perch	Morone americana	342	743
white perch	Morone americana	308	497
white perch	Morone americana	284	399
white perch	Morone americana	300	430
white perch	Morone americana	300	468
white perch	Morone americana	278	372
white perch	Morone americana	290	439
white perch	Morone americana	290	408
white perch	Morone americana	281	383
white perch	Morone americana	335	728
white perch	Morone americana	285	395
white perch	Morone americana	311	574
white perch	Morone americana	300	488
white perch	Morone americana	295	443
white perch	Morone americana	288	415
yellow perch	Perca flavescens	187	84
yellow perch	Perca flavescens	220	110
yellow perch	Perca flavescens	248	199
yellow perch	Perca flavescens	195	96
yellow perch	Perca flavescens	195	83
yellow perch	Perca flavescens	228	151
yellow perch	Perca flavescens	193	86
yellow perch	Perca flavescens	224	140
yellow perch	Perca flavescens	210	105
yellow perch	Perca flavescens	215	121
yellow perch	Perca flavescens	233	164
yellow perch	Perca flavescens	187	76
yellow perch	Perca flavescens	206	96
yellow perch	Perca flavescens	222	123
yellow perch	Perca flavescens	214	97

A total of 42 white perch and 35 yellow perch were caught in the gill-net.

Lengths/weights for a sub-sample of 15 fish are provided in the above table.

Table 23d. Fish Collected in Gill-Net Set #5.

Common Name	Scientific Name	Length (millimeters)	Weight (grams)
yellow perch	Perca flavescens	193	72
yellow perch	Perca flavescens	201	81
yellow perch	Perca flavescens	196	84
yellow perch	Perca flavescens	179	68
yellow perch	Perca flavescens	212	101
yellow perch	Perca flavescens	208	97
yellow perch	Perca flavescens	193	82
yellow perch	Perca flavescens	202	97
yellow perch	Perca flavescens	201	89
yellow perch	Perca flavescens	215	115
yellow perch	Perca flavescens	191	79
yellow perch	Perca flavescens	205	98
yellow perch	Perca flavescens	196	79

Table 23e. Fish Collected in Seine-Haul B.

Common Name	Scientific Name	Length (millimeters)	Weight (grams)
			<u> </u>
rainbow trout	Oncorhynchus mykiss	342	449
rainbow trout	Oncorhynchus mykiss	365	522
bluegill	Lepomis macrochirus	35	<1
bluegill	Lepomis macrochirus	45	<1
bluegill	Lepomis macrochirus	45	<1
bluegill	Lepomis macrochirus	40	<1
bluegill	Lepomis macrochirus	40	<1
bluegill	Lepomis macrochirus	28	<1
bluegill	Lepomis macrochirus	38	<1
bluegill	Lepomis macrochirus	40	<1
bluegill	Lepomis macrochirus	45	<1
bluegill	Lepomis macrochirus	37	<1
bluegill	Lepomis macrochirus	30	<1
bluegill	Lepomis macrochirus	45	<1
bluegill	Lepomis macrochirus	44	<1
bluegill	Lepomis macrochirus	38	<1
bluegill	Lepomis macrochirus	35	<1

A total of 20 bluegill were caught in the seine-haul. Lengths/weights for a sub-sample of 15 fish are provided in the above table.

Table 24. Approximate Numbers of Waterfowl Recorded During Sampling Visits to Stafford Pond (1996).

Date	# Birds
21-Feb	25
19-Mar	25
17 - Apr	350
14-May	25
29-May	25
10-Jun	25
27-Jun	25
17-Jul	25
30-Jul	25
8-Aug	25
22-Aug	500
5-Sep	100
29-Oct	500
mean	129

Aquatic Invertebrates

A detailed survey of the invertebrate community of Stafford Pond was not conducted as part of this investigation. However, it is expected that Stafford Pond would harbor a warm water macroinvertebrate assemblage typical of many New England lakes. Based upon the morphological characteristics of the pond, its substrate and the presence of some rooted aquatic plants, the macroinvertebrate community is expected to be dominated by four Orders; Diptera (flies), Coleoptera (beetles), Hemiptera (true bugs), and Odonata (dragonflies and damselflies).

Amphibians and Reptiles

Amphibian and reptile populations were not specifically investigated as part of this study. However, it is expected that a number of species would inhabit the perimeter of the pond and adjacent wetlands, as suitable habitat is abundant. Turtle, snake, frog, and salamander species that are likely to inhabit this ecosystem include: snapping turtle (Chelydra serpentina), painted turtle (Chrysemys picta), eastern garter snake (Thamnophis s. sirtalis), northern water snake (Nerodia s. sipedon), bullfrog (Rana catesbeiana), green frog (Rana clamitans melnota), American toad (Bufo americana), gray treefrog (Hyla versicolor), spring peeper (Hyla crucifer), wood frog (Rana sylvatica), pickerel frog (Rana palustris), red spotted newt (Notophthalmus v. viridescens), and red backed salamander (Plethodon cinereus).

POND USE EVALUATION

WATER SUPPLY AND WITHDRAWAL IMPACTS

As previously mentioned under the Physical Pond Features-Hydrology section of this report, during 1996 the net withdrawal for drinking water purposes averaged 836,729 gal/day. This would equate to a 0.16 foot decrease in pond water elevation during a 30 day month, assuming no inflows to offset the withdrawal. Under the very dry summer conditions of 1995, this could have resulted in a 0.5 ft decline in water level. Even at elevated summer withdrawal rates, no more than a 1.0 ft drawdown would be possible from withdrawal alone. Withdrawing water from the pond does increase the likelihood that surface outflow will cease during the summer months, when pond outputs are typically greater than inputs. However, even without the drinking water withdrawal it is likely that surface outflow would cease; pond outputs would still be greater than pond inputs, as evaporation significantly increases during this time of year. Evaporation can cause the loss of close to 1.0 ft of water during a typical summer, with peaks to about 1.2 ft. Water withdrawal from Stafford Pond is therefore significant during the summer, but is not the major component of system hydrology.

Discharge of filter backwash into the lake is another mode of possible impact by the water withdrawal and treatment operation. Backwash includes primarily contaminants removed from the lake water, but also may include coagulants and other additives used in the treatment process. Discharge of this water and associated contaminants to Stafford Pond is undesirable, but is mitigated to some extent by inactivation with aluminum and prior settling in clarification tanks. Only during times of frequent backwashing (e.g., summer algal blooms) is settling time inadequate. As most contaminants are inactivated by aluminum, which is very stable at most encountered pH ranges, recycling into the lake is unlikely to be substantial, even when backwash is inadequately settled prior to discharge. Testing of backwash water revealed the lowest levels of phosphorus encountered in this study. While discharge of backwash to the pond is not an ideal situation, it does not appear to represent a significant threat to water quality.

BOATING AND WATERCRAFT IMPACTS

Motorized boating activities may influence lake ecology in a number of ways, some positive but most negative (Wagner 1990, Table 25a). Although most conceivable boating impacts appear adverse to lake ecology, their impact is highly variable and may not be obvious or even detectable in many cases. Degree of impact is a function of both lake features and motorized watercraft characteristics.

Many features of a lake predispose it to certain impacts and may protect it from others (Wagner 1990, Table 25b). Stafford Pond is a relatively large body of water that could potentially experience a significant amount of boat traffic. The regularly mixed volume of Stafford Pond is moderate, thus providing a moderate amount of dilution water to counteract pollution inputs from boats or re-suspension of bottom sediments. However, the hydraulic residence time is very high (>365 days), indicating that water and pollutants stay in the pond for a long period of time. The shoalness ratio for Stafford Pond is high, with greater than 60% of the total lake area being less than 20 feet in depth. Additionally, the shallowness ratio for Stafford Pond is also relatively

Table 25a. Potential Motorized Watercraft Impacts on Water Resources and Associated Biota.

A. Altered water quality

- 1. Increased turbidity
- 2. Increased nutrient levels
- 3. Increased hydrocarbon concentrations
- 4. Increased metals levels
- 5. Increased oxygenation
- 6. Increased contamination by pathogens
- 7. Changes in taste and odor

B. Altered sediment quality

- 1. Redistribution of particles
 - a. Shoreline erosion
 - b. Littoral zone changes
- 2. Increased nutrient accumulations
- 3. Increased hydrocarbon accumulations
- 4. Increased metals accumulations

C. Altered flora

- 1. Epilimnetic mixing of plankton
- 2. Inhibition of algal growth
- 3. Stimulation of algal growth
- 4. Inhibition of rooted plant growth
 - a. Direct damage
 - b. Indirect suppression
- 5. Dispersal of rooted plants

D. Altered fauna

- 1. Collision-induced mortality
- 2. Reduced reproductive success
- 3. Changes through food resource modification
- 4. Changes through habitat modification
 - a. Physical habitat
 - b. Chemical habitat
- 5. Flesh tainting

Table 25b. Characteristics of Lake Ecosystems that

Influence Ecological Impact by	Motorized Watercraft.
1. Lake area	5. Shallowness ratio
a. Low (<20 ac)	(area <5 ft deep/total area)
b. Medium (20-100 ac)	a. Low (<0.10)
c. Large (100-300 ac)	b. Medium (0.10-0.25)
d. Very Large (>300 ac)	c. High (0.25-0.50)
2. Epilimnetic volume	d. Very high (>0.50)
a. Low (<300 million gal)	Shoreline configuration
b. Medium (130-653 million gal)	(shoreline length/circumferer
c. Large (653-1960 million gal)	of circle with lake area)
d. Very large (>1960 million gal)	a. Low (<1.5)
3. Hydraulic residence time	b. Medium (1.5-3.0)
a. Low (<21 days)	c. High (>3.0)
b. Medium (21-90)days	7. Littoral zone bottom coverage
c. High (90-365 days)	by rooted plants
At 1	T (*0.50/)

- d. Very high (>365 days) 4. Shoalness ratio (area <20 ft deep/total area)
 - a. Low (<0.25)
 - b. Medium (0.25-0.50)
 - c. High (0.5-0.75)
 - d. Very high (0.75-1.00)

- ence
- ge
 - by rooted plants
 - a. Low (<25%)
 - b. Medium (25-50%)
 - c. High (50-75%)
 - d. Very high (75-100%)
- 8. Substrate type
 - a. Cobble
 - b. Gravel and sand
 - c. Silt or clay
 - d. Organic muck

high, with nearly 25% of the total lake area less than 5 feet in depth. The shoalness and shallowness ratios are indicators of the portion of the pond bottom that could potentially be impacted by turbulence from motorized watercraft. However, the lack of fine sediments in shallow portions of the lake offsets the potential for impact suggested by shallowness and shoalness ratios.

Shoreline configuration at Stafford Pond indicates that only a few small coves are present, and boulders limit boat use of these coves. Littoral zone bottom coverage by rooted aquatic plants appears to be low (<25%), according to field investigations conducted during the summer of 1996. Rooted aquatic plant coverage can help to minimize resuspension of bottom sediments. Again however, benthic substrates in Stafford Pond are primarily comprised of boulder, cobble, gravel, and sand in water depths <15 feet; turbulence impacts by boating are therefore minimized.

During 1996, approximate numbers and types of boats were recorded on most sampling visits to Stafford Pond (Table 25c). Boat use was very low during this period of time, probably related to poor water quality conditions, including frequent algal blooms, and the cool, wet and cloudy conditions prevalent during 1996. Weekend visits were not conducted, however, and boating density would be expected to be greater on weekends. The boat ramp parking area could support about 20 vehicles with trailers, although no more than 5 vehicles were ever observed in this area. The greatest number of watercraft was documented on May 14, 1996 when a total of four boats were present. The majority of watercraft documented were small fishing boats with outboard engines. A few personal watercraft were observed. The largest boats and engines tend to be associated with shorefront property owners who moor and operate those boats seasonally. There is a 10 hp limit for boats on Stafford Pond which appears to be observed by most people bringing boats to the lake, but not by shoreline residents.

In terms of safety, boater enjoyment, and general environmental protection, each boat should be afforded 10-20 acres of obstacle-free water area with a depth of at least 5 ft. at any given time. This is especially important at Stafford Pond, where submerged and protruding boulders pose a definite safety threat and create greater risk of a fuel spill. Although the lake has an area of 487 acres, much of this area is not boatable as a consequence of boulder obstacles. Additionally, a 200 ft limit should be observed with relation to the shoreline to minimize wake damage and user conflicts; Rhode Island boating law allows for a 200 ft separation between boating and swimming areas. This limit should be expanded further if the water is shallow (<5 ft deep) at a distance of 200 ft from shore. For Stafford Pond, about half of the lake, or 250 acres, is boatable. Therefore, a density of 12-25 motorized watercraft should be tolerable. Although such densities are possible, they were not observed or reported during this investigation.

Given the use of Stafford Pond as a drinking water supply, there is a definite risk posed by the use of motorized watercraft in the pond. Although some physical features of the pond make it susceptible to impacts, actual boating densities appear low and no impacts were clearly observed. Water quality data described previously suggest no substantive impacts on water quality which could be ascribed to motorized watercraft. The same conditions which generate concern by those using the lake for other purposes are of concern to boaters, most notably the decreased water

Table 25c. Approximate Numbers and Types of Boats Recorded on Sampling Visits to Stafford Pond (1996).

Date	# Boats	Engine Type
21-Feb	0	
19-Mar	0	
17-Apr	2	gas-outboard
14-May	4	gas-outboard
29-May	1	gas-outboard
·	1	electric
10-Jun	3	gas-outboard
27-Jun	2	gas-outboard
17-Jul	2	gas-outboard
	1	no motor
30-Jul	3	gas-outboard
8-Aug	1	gas-inboard
· ·	. 1	no motor
22-Aug	1	gas-inboard
, , ,	1	no motor
5-Sep	2	gas-outboard
29-Oct	0	

clarity. Should Stafford Pond regain its former clarity and become a popular boating resource, management of motorized watercraft densities may be necessary to minimize environmental impacts and user conflicts. For now, however, there does not appear to be a major threat from boating in accordance with state and local laws.

FISHING AND FISHERY CONSIDERATIONS

Depending upon how the situation is viewed, present conditions in the pond can either be positive or negative regarding fishing and fisheries. One school of thought holds that nutrient enrichment means greater production and biomass and thus more and bigger fish, suggesting that conditions in Stafford Pond may be favorable. However, nutrient enrichment in the case of Stafford Pond is excessive and has many potential negative impacts on fishing and fisheries.

Excessive nutrient loading is directly related to a high degree of decomposition on the pond bottom. During the summer of 1996, it was noted that decomposition of organic matter created an oxygen deficit in the bottom two meters of the pond, and this zone could increase in volume during a drier, calmer summer. This area of the pond is crucial habitat for cold water species such as trout as they seek refuge from the warmer upper waters during summer. Additionally, increased nutrient enrichment has resulted in an accumulation of oxygen-demanding organic muck in the pond, thus reducing usable habitat for many invertebrate species and potentially reducing spawning habitat for a self sustaining population of smallmouth bass. Frequent algal blooms can create physical or chemical stress on fish, including irritation and clogging of gill membranes. Finally, frequent algal blooms associated with excessive nutrient enrichment are aesthetically unpleasant to most lake users, including anglers.

Questions of quantity and quality must be considered in lake management for fish production. Greater productivity may not be desirable if it causes longer term instability or if qualitative aspects of the fishery (type and condition of fish) or fishing experience (sense of sight or smell) are impaired. The eutrophication experienced by Stafford Pond does appear to have negative effects on stability, as evidenced by discontinuous size distributions for captured species, and on fishing, as demonstrated by angler dissatisfaction with pond appearance.

SWIMMING AND RELATED CONTACT RECREATION

Stafford Pond is categorized as a Class B waterbody by the State of Rhode Island (RIDEM 1988). Designated uses under the Class B category include public water supply with appropriate treatment, agricultural uses, primary contact recreation, and fish/wildlife habitat. Present conditions in the pond are distinctly undesirable for swimming, especially during algal bloom conditions or anywhere in the vicinity of the northern tributary. Low clarity creates unsafe conditions during much of the swimming season, while fecal bacterial levels near the northern tributary suggest a possible health hazard. While there is no public beach on Stafford Pond, use by shorefront residents is certainly possible, although inadvisable under current conditions. Waterskiing and other forms of contact recreation are inherently unsafe under such low water clarity, especially in light of the many boulders in the lake.

As most drinking water supply reservoirs have-restrictions regarding contact recreation, there would be a potential conflict among users if conditions were improved in Stafford Pond. A ban on contact is often invoked, at least within some horizontal distance of the water intake, for the purpose of avoiding pathogenic contamination of the water supply. Given the long detention time in Stafford Pond and the tendency for pathogens to die off under oxic conditions, some spatial arrangement might be possible to allow contact recreation to coexist with water supply functions. However, mixing appears substantial in this system, both horizontally and vertically, and further evaluation is necessary before a scientifically based decision could be made. Under current conditions, swimming is to be discouraged for safety and health reasons, minimizing any conflict with water supply.

OTHER USES

The primary other uses of the pond are for aesthetic enjoyment and landing of an occasional float plane. Aesthetic enjoyment and related passive uses are most impaired by summer algal blooms, and improvement for water supply purposes and aesthetic appeal are entirely consistent; no conflict exists. Use by float planes poses the same risk as use by motorized watercraft, but given the nominal use of the lake for such purposes, this is not a major threat to other uses or lake condition.

DIAGNOSTIC SUMMARY

The watershed draining to Stafford Pond is approximately 947 acres in size. The watershed:lake area ratio is small (<2:1), indicating high potential for successful management. Available geology and soils information indicate that infiltration capacity is slow and average runoff rates are moderate. Forested and residential land use categories predominate in the Stafford Pond watershed.

Stafford Pond is approximately 487 acres in size. Average and maximum water depths were 13 and 25 feet, respectively. Pond volume was approximately 271,800,000 ft³ or 2.04 billion gallons. Benthic sediments were comprised mostly of boulder, cobble, gravel, and sand in water depths <15 ft. Mucky bottom sediments were more prevalent in the deeper areas of the pond, and also at the mouth of the northern tributary. Two tributaries and two stormwater pipes discharge to Stafford Pond. An outlet structure located along the northern perimeter of the pond controls the outward flow of water into Sucker Brook and is managed by downstream parties.

Average annual water load to Stafford Pond is approximately 5.5 cfs, assuming normal precipitation conditions. Flow into Stafford Pond is derived from a combination of direct precipitation (46%), ground water inseepage (18%), surface water base-flow (13%), and surface water storm-flow (23%). Pond outputs were derived from a combination of evaporation (31%), ground water outseepage (4%), surface outflow (42%), and withdrawal (water treatment facility @ 23%). Stafford Pond has a flushing rate of 0.65 times per year, a detention time of 1.54 years, and a response time of 0.65-1.08 years.

The most salient results of routine chemical monitoring are as follows: Low levels of dissolved oxygen were recorded in the bottom two meters of the pond, primarily during the summer months. Total alkalinity, total hardness, and conductivity were low at all sites except SP5b. Higher values at SP5b appear to be a result of inputs from a dairy farm located in this area of the watershed. Average Secchi transparency and concentrations of chlorophyll a in Stafford Pond were indicative of eutrophic conditions. Values of inorganic and total nitrogen were low at all sites except SP5b, where concentrations were high. Concentrations of total phosphorus were generally elevated (>0.025 mg/L) and indicative of eutrophic conditions at all sampling locations except SP11 and SP12 (water treatment plant backwash). Average total phosphorus concentrations were exceedingly high (>0.1 mg/L) at SP5b. The total nitrogen:total phosphorus ratio in Stafford Pond was greater than 15:1, indicating that phosphorus is most likely the limiting nutrient for plant growth in this system, although light is probably the most critical limiting factor much of the time.

The most salient results of supplemental chemical monitoring are as follows: Cadmium was not detected in water samples from Stafford Pond. Lead was detected only at sampling location SP1a, where the lead concentration was below the Maximum Contaminant Level for drinking water, but slightly above the chronic toxicity threshold for aquatic life. A single water sample was collected at SP1a during the month of October and was analyzed for mercury; results indicated that mercury was non-detectable (<0.00255 ug/L). Copper was detected at all sampling

locations. Concentrations were below the MCL for drinking water, but were above acute and chronic toxicity thresholds for aquatic life. Aluminum concentrations were normal at all sampling locations.

Concentrations of calcium and magnesium were low at all in-pond sampling locations. Concentrations of sodium and chloride were moderate at all in-pond sampling locations and did not indicate significant pollution. Concentrations of dissolved iron and manganese were considered relatively low at all in-pond sampling locations. Monitoring of selected organic compounds in water from Stafford Pond indicated relatively low levels. In-pond concentrations of total petroleum hydrocarbons ranged from <0.5 to 3.2 mg/L. Concentrations above 1 mg/L are sometimes cause for concern, but many natural compounds can register as TPH in typical laboratory tests. Polynuclear aromatic hydrocarbons provide a better indication of anthropogenic hydrocarbon inputs, and were not detected. DDT and PCB's were also not detected.

The most salient results of storm water chemical monitoring are as follows: Average values of conductivity were high at SP5b and exceedingly high at SP9. Values of inorganic and total nitrogen were low at SP6 and SP10, and high at the remaining sites. The highest values were recorded at SP5b. Average wet weather concentrations of total phosphorus were high (>0.05 mg/L) at all sites except SP10 (precipitation). Once again, the highest concentrations were recorded at SP5b. Cadmium was not detected in storm water entering Stafford Pond. Lead was non-detectable at all sites except SP9, where a total concentration of 0.03 mg/L was documented. This concentration was greater than the MCL for drinking water and the acute and chronic toxicity thresholds for aquatic life. Concentrations of copper were below the MCL for drinking water at all storm water sampling locations. However, levels of copper did exceed acute and chronic toxicity thresholds for aquatic life.

Storm water values for aluminum were generally greater than dry weather in-pond values, but were not considered high for storm water. Storm water concentrations of total calcium and magnesium were generally low at all sites except SP5b and SP8, where concentrations were higher than expected background levels, but still not high by regional comparison. Storm water concentrations of total sodium and chloride were high at SP5b, SP8, and SP9. High concentrations at SP5b were likely a result of dairy farming activities and road runoff. Road runoff was likely responsible for contamination at the latter two sites. Concentrations of dissolved iron and manganese were relatively low at all sites. Storm water monitoring for selected organic compounds indicated relatively low levels. Total petroleum hydrocarbons ranged from <0.5 to 0.9 mg/L. DDT, PCB's, and polynuclear aromatic hydrocarbons were not detected.

Elevated nitrogen concentrations were documented at all ground water monitoring locations on either one or both sampling dates. The sources could be sewage, agricultural waste, or decaying vegetation. Dissolved phosphorus concentrations were also elevated along all four shoreline segments, but concurrently elevated iron levels minimize the availability of this phosphorus. Only in the southwest segment was there any potentially significant phosphorus input, and low flows limit the magnitude of this input.

Sediments in the main body of the pond and near the northern tributary were mucky, whereas sediments near the boat launch were sandy. Organic carbon content was especially high near the mouth of the northern tributary, most likely a direct result of inputs from the upstream dairy farm. Total phosphorus concentrations were high in this area and low at the remaining sites. TKN was low near the boat launch, moderate in the main body of the pond, and high at the mouth of the northern tributary. Metal concentrations were generally within acceptable ranges at all sites. Total petroleum hydrocarbons were relatively low at all three sampling locations. DDT and PCB were not detected in pond sediments. Polynuclear aromatic hydrocarbons were detected at all three sampling locations, with elevated concentrations documented near the boat launch and at the mouth of the northern tributary.

Edible portions from three white perch were composited and analyzed for cadmium, lead, PCB's, mercury, and polynuclear aromatic hydrocarbons. Results of the fish tissue analysis revealed that levels of selected contaminants were relatively low, posing no apparent ecological or health threat.

Data quality monitoring results for water chemistry analyses indicated that variability in most parameters was tolerable, but variation among duplicate nutrient samples was undesirably high. This could limit the ability to determine if slightly elevated concentrations are a result of pollution or variability in chemical analyses, but will not greatly affect overall interpretation of the chemical data. Even with this significant degree of variability, major sources of pollution are quite obvious, and multiple approaches to nutrient loading provide increased reliability in overall conclusions.

Nitrogen and phosphorus loading were assessed by multiple means. The resultant nitrogen load is expected to be between 4719 and 7839 kg/yr (available vs. total), with about 66% derived from watershed sources, 20-25% from direct precipitation, and the remaining 9-14% from waterfowl and internal loading. Considering only the load from watershed sources, about 44% of the that load was associated with storm flow, while 26% was attributable to base flow in the two tributaries and 30% was related to ground water inputs. No source was a clearly dominant loading factor. A predictive model for later use in evaluating management scenarios sets the nitrogen load at 8111 kg/yr.

The resultant phosphorus load is expected to be between 404 and 630 kg/yr (available vs. total), with about 75-79% derived from watershed sources, 10-14% from internal loading, 9% from direct precipitation, and 2% from waterfowl. Considering only the load from watershed sources, about 52-64% of the watershed load was associated with storm flow, while 26-29% was attributable to base flow in the two tributaries and 7-22% was related to ground water inputs. Of particular note is that close to half of the entire load comes from Basin 5, which includes the dairy farm. A predictive model for later use in evaluating management scenarios sets the phosphorus load at 445 kg/yr.

Observed and predicted current conditions suggest excessive phosphorus loading, with Basin 5 contributing the greatest itemized portion of the total effective load. Nitrogen loads are also high, but not as clearly associated with any one basin or source. Resultant in-lake average

concentrations for nitrogen and phosphorus range from 0.8-1.0 mg/L and 36-40 ug/L, respectively. These concentrations facilitate periodic algal blooms, with average chlorophyll levels between 15 and 22 ug/L and peaks in excess of 60 ug/L. This depresses water clarity, leading to an average Secchi transparency of 1.4-1.5 m. The highest water clarity results in a Secchi depth of 2.9-3.5 m, but this occurs only briefly during the growing season.

Results of bacteria monitoring in surface waters at Stafford Pond revealed that concentrations recorded during dry weather were generally low (<100/100 mL) at all sites except SP5b, where values were consistently high (>500/100 mL). Values recorded during wet weather ranged from low to high.

Phytoplankton exhibited spring and late summer peaks, with the diatom *Asterionella* dominating the spring bloom and the bluegreen *Aphanizomenon* dominating the summer bloom. A traditional temperate zone successional pattern was exhibited, interrupted only by reduction of biomass and delay of bluegreen dominance by two early summer copper treatments.

Zooplankton included few forms and low to moderate biomass, but the presence of large bodied *Daphnia* suggests some potential for both grazing control of algae and desirable food for planktivorous fish. The *Daphnia* population crashed in August, however, probably from a combination of predation pressure and poor food quality. Zooplankton size distribution suggested either a balanced fish size structure or a tendency toward older, larger fish; further investigation into the stability of the fish community is warranted.

Results of the aquatic vascular plant surveys revealed that rooted plant growth was minimal in Stafford Pond. Rooted plants only grew near the periphery of the pond and plant densities did not exceed 25 percent. Only seven taxa of aquatic vascular plants were documented in the pond. All seven taxa are native to New England and only one is sometimes considered a nuisance. Rocky substrate in shallow areas is expected to minimize rooted plant growths even in the absence of the current light limitation induced by algal blooms.

The fish community of Stafford Pond is typical of many warm water New England lakes. Expected species composition includes bluegill, pumpkinseed, smallmouth bass, largemouth bass, yellow perch, white perch, brown bullhead, and stocked trout. A gill net and seine survey captured trout, bluegills, yellow perch and white perch, with the latter two species most abundant. Although condition factors were at least average, lack of multiple size classes suggests possible recruitment problems and instability.

Results of the waterfowl investigation indicated that numbers were not insignificant (average = 129), especially when the birds congregated near the water treatment facility intake, but most birds were sighted near Pelletier point at the outlet end of the pond, and overall density was not large on a regular basis. Detailed surveys of the aquatic invertebrate and amphibian/reptile communities of Stafford Pond were not conducted, but typical New England assemblages are expected.

Water withdrawal from Stafford Pond for drinking water purposes can draw the water level down by up to one foot under drought conditions, but is less of a loss factor than evaporation. Discharge of filter backwash into the pond is another mode of possible impact by the water treatment facility. Although this is not an ideal situation, it does not appear to represent a significant threat to water quality in the pond, since pollutants are largely coagulated and settled prior to water discharge.

Designated uses under Stafford Pond's Class B category include public water supply with appropriate treatment, agricultural uses, primary contact recreation, and fish/wildlife habitat. Given the use of Stafford Pond as a drinking water supply, there is a definite risk posed by the use of motorized watercraft on the pond. Certain physical features of Stafford Pond make it somewhat susceptible to boating impacts, however, actual boating densities during 1996 were very low and no impacts were observed.

Nutrient enrichment of Stafford Pond is excessive and has many potential negative impacts on fishing and the fish community. Excessive nutrient enrichment may have negative effects on fish community stability, as evidenced by discontinuous size distributions for captured species, and on fishing, as demonstrated by angler dissatisfaction with pond appearance.

Present conditions in the pond are distinctly undesirable for swimming, especially during algal bloom conditions or anywhere in the vicinity of the northern tributary as an implication of fecal bacteria levels. As most drinking water supply reservoirs have restrictions regarding contact recreation, there would be a potential conflict among users if water quality conditions were improved in Stafford Pond. Further evaluation regarding this issue is certainly necessary.

Other uses of Stafford Pond include aesthetic enjoyment and landing of an occasional float plane. Aesthetic enjoyment and related passive uses are most impaired by summer algal blooms, and improvement for water supply purposes and aesthetic appeal are entirely consistent. Use by float planes poses the same risk as use by motorized watercraft, but given the nominal use of the lake for such purposes, this is not a major threat to other uses or lake condition.

LITERATURE CITED

Bachman, R.W. 1980. Prediction of Total Nitrogen in Lakes and Reservoirs. In: Proceedings of an International Symposium on Lake and Reservoir Management, pp. 320-323, USEPA, Washington, D.C.

Brady, N.C. 1990. The Nature and Property of Soils. Macmillan Publishing Company, New York, N.Y.

Carlander, K.D. 1950. Handbook of Freshwater Fishery Biology. Iowa Cooperative Fishery Research Unit, Ames, Iowa.

Cole, G.A. 1983. Textbook of Limnology. Waveland Press, Inc., Prospect Heights, Illinois.

Dunne, T., and L.B. Leopold. 1978. Water in Environmental Planning. W.H. Freeman and Company, New York.

Fenton G. Keyes Associates. 1967. Preliminary Engineering Survey and Report on Water Supply and Distribution for the Town of Tiverton, Rhode Island. Fenton G. Keyes Associates, Inc., Providence, Rhode Island.

Fenton G. Keyes Associates. 1977. Supplemental Engineering Report on Water Supply and Distribution for the Town of Tiverton Water Commission. Fenton G. Keyes Associates, Providence, Rhode Island.

Green, L.T., and Herron, E. 1995. University of Rhode Island Watershed Watch - 1994. University of Rhode Island, Department of Natural Resources Science, Kingston, Rhode Island.

Guthrie, R.C., and J.A. Stolgitis. 1990. Fisheries Investigations and Management in Rhode Island Lakes and Ponds: Federal Aid to Fisheries Project F-20-R. Rhode Island Department of Environmental Management, Division of Fish and Wildlife, Providence, Rhode Island.

Hondzo, M., and H.G. Stefan. 1996. Dependence of Water Quality and Fish Habitat on Lake Morphometry and Meteorology. Journal of Water Resources Planning and Management Sep/Oct: 364-373.

Jones, J.R., and R.W. Bachman. 1976. Prediction of Phosphorus and Chlorphyll Levels in Lakes. JWPCF 48:2176-2184.

Larsen, D.P., and H.T. Mercier. 1976. Phosphorus Retention Capacity of Lakes. J. Fish. Res. Bd. of Canada 33:1742-1750.

LEA, Inc. 1974. Preliminary Engineering Report upon Removal of Algae from Stafford Pond by Microstraining - unpublished. Linenthal Eisenberg Anderson, Inc., Boston, Massachusetts.

Long, E.R., and L.G. Morgan. 1990. The Potential for Biological Effects of Sediment-Sorbed Contaminants Tested in the National Status and Trends Program. National Oceanic and Atmospheric Administration, Seattle, Washington.

Mills, E.L., D.M. Green and A.Schiavone. 1987. Use of zooplankton size to assess the community structure of fish populations in freshwater lakes. N. Am. J. Fish. Manage. 7:369-378.

Mitchell, D.F., K.J. Wagner, and C. Asbury. 1988. Direct measurement of groundwater flow and quality as a lake management tool. Lake Reserv. Man. 4:169-178.

Mullan, J.W. 1973. A Compendium of the Life History and Ecology of the White Perch (Morone americana). Massachusetts Division of Fish and Wildlife, Westboro, Massachusetts.

Pindell, T. 1996. Personal communication. United States Department of Agriculture Natural Resources Conservation Service, Warwick, Rhode Island.

RIDEM. 1989. Southern Rhode Island Lake Water Quality Assessment Program: Preliminary Trophic Status Report for 1989 Field Season. Rhode Island Department of Environmental Management, Division of Water Resources, Providence, Rhode Island.

Rector, D.D. 1981. Soil Survey of Rhode Island. United States Department of Agriculture, Soil Conservation Service, in cooperation with the Rhode Island Agricultural Experiment Station.

RIDEM. 1988. Rhode Island Department of Environmental Management Division of Water Resources - Water Quality Regulations for Water Pollution Control. RIDEM, Providence, Rhode Island.

Rojko, A. 1992. Distribution of Sediment Metal Concentrations in Massachusetts Lakes. University of Massachusetts, Lowell, Massachusetts.

Sopper, W.E. and H.W. Lull. 1970. Streamflow Characteristics of the Northeastern United States. Bulletin 766, Pennsylvania State University, University Park, PA.

Sumner, D. 1996. Personal communication. Stone Bridge Fire District Water Filtration Plant, Tiverton, Rhode Island.

USEPA. 1996. Drinking Water Regulations and Health Advisories. U.S. Enviornmental Protection Agency, Washington, D.C.

Vanderslice, R. 1996. Personal communication. Rhode Island Department of Health, Providence, Rhode Island.

Vollenweider, R.A. 1968. Scientific Fundamentals of the Eutrophication of Lakes and Flowing-Waters, with Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication. Tech. Rept. to OECD, Paris, France.

Wagner, K.J. 1990. Assessing Impacts of Motorized Watercraft on Lakes: Issues and Perceptions. Enhancing States' Lake Management Programs 1990:77-93.

Whitman and Howard, Inc. 1992. Water Quality Protection Plan - unpublished. Whitman and Howard, Inc., Wellesley, Massachusetts.

APPENDIX A COLLECTED DATA

DATA TABLES

- A-1. Results of Dissolved Oxygen/Temperature Monitoring in Tributaries to Stafford Pond (1996)
- A-2. Dissolved Oxygen/Temperature Profiles at the Deep Hole Sampling Location (SP1) in Stafford Pond (1996)
- A-3. Results of pH Monitoring in Surface Waters at Stafford Pond (1996)
- A-4. Results of Total Alkalinity Monitoring in Surface Waters at Stafford Pond (1996)
- A-5. Results of Total Hardness Monitoring in Surface Waters at Stafford Pond (1996)
- A-6. Results of Conductivity Monitoring in Surface Waters at Stafford Pond (1996)
- A-7. Results of Turbidity Monitoring in Surface Waters at Stafford Pond (1996)
- A-8. Results of Secchi Transparency Monitoring in Stafford Pond (1996)
- A-9. Results of Chlorophyll a Monitoring in Stafford Pond (1996)
- A-10. Results of Nitrite+Nitrate Nitrogen Monitoring in Surface Waters at Stafford Pond (1996)
- A-11. Results of Ammonium Nitrogen Monitoring in Surface Waters at Stafford Pond (1996)
- A-12. Results of Inorganic Nitrogen (NO₂+NO₃+NH₄) Monitoring in Surface Waters at Stafford Pond (1996)
- A-13. Results of Total Kjeldahl Nitrogen (TKN) Monitoring in Surface Waters at Stafford Pond (1996).
- A-14. Results of Total Nitrogen (NO₂+NO₃+TKN) Monitoring in Surface Waters at Stafford Pond (1996)
- A-15. Results of Total Phosphorus Monitoring in Surface Waters at Stafford Pond (1996)
- A-16. Results of Dissolved Phosphorus Monitoring in Surface Waters at Stafford Pond (1996)
- A-17a. Results of Total Cadmium Monitoring in Surface Waters at Stafford Pond (1996)
- A-17b. Results of Dissolved Cadmium Monitoring in Surface Waters at Stafford Pond (1996)
- A-18a. Results of Total Lead Monitoring in Surface Waters at Stafford Pond (1996)
- A-18b. Results of Dissolved Lead Monitoring in Surface Waters at Stafford Pond (1996)
- A-19a. Results of Total Copper Monitoring in Surface Waters at Stafford Pond (1996)
- A-19b. Results of Dissolved Copper Monitoring in Surface Waters at Stafford Pond (1996)
- A-20a. Results of Total Aluminum Monitoring in Surface Waters at Stafford Pond (1996)
- A-20b. Results of Dissolved Aluminum Monitoring in Surface Waters at Stafford Pond (1996)
- A-21. Results of Total Calcium Monitoring in Surface Waters at Stafford Pond (1996)
- A-22. Results of Total Magnesium Monitoring in Surface Waters at Stafford Pond (1996)
- A-23. Results of Total Sodium Monitoring in Surface Waters at Stafford Pond (1996)
- A-24. Results of Total Chloride Monitoring in Surface Waters at Stafford Pond (1996)
- A-25. Results of Dissolved Iron Monitoring in Surface Waters at Stafford Pond (1996)
- A-26. Results of Dissolved Manganese Monitoring in Surface Waters at Stafford Pond (1996)
- A-27. Results of Total Petroleum Hydrocarbon Monitoring in Surface Waters at Stafford Pond (1996)
- A-28. Results of DDT and PCB Monitoring in Surface Waters at Stafford Pond (1996)
- A-29. Results of Polynuclear Aromatic Hydrocarbon Monitoring in Surface Waters at Stafford Pond (1996)
- A-30a. Data Quality Monitoring Comparison of Duplicate Samples
- A-30b. Data Quality Monitoring Total Phosphorus Comparisons Between Laboratories

Table A-1. Results of Dissolved Oxygen/Temperature Monitoring in Tributaries to Stafford Pond (1996).

				(So/ -
Sampling	Dissolved Ox	Dissolved Oxygen (mg/L)	Tempera SPS6	Temperature (* C.) SSb SP6
Date	SESO	200	20.10	
Dry Weather:				,
21. Heh	12.8	12.7	3.1	2.0
19.Mar	12.4	12.6	7.8	5.5
17 Apr	66	10.6	7.1	8.4
14 May	10.4	∞	16.3	13,5
14-101ay	8 %	7.0	15.2	13.5
29-191ay 10 hin	3.5	5.4	18.6	17.0
10-Jun) *	3.5	*	17.0
17-1ni	2.2	5.1	23.1	22.3
17-Jul 30-Yul	*	*	*	*
30-Jui	*	*	*	*
o-Aug	*	*	*	*
307-77	*	*	*	*
1-2ch				

*Stream discharge minimal or non-existent.

Table A-2. Dissolved Oxygen/Temperature Profiles at the Deep Hole Sampling Location (SP1) in Stafford Pond (1996).

				Depth (m)	ı) — ———		_	_	
	0	11	2	3	4	5	6	7	7.5
1-Feb	 						14.5	11.0	
Dissolved Oxygen	14.7	16.7	18.0	18.2	18.0	17.0	14.2 3.0	11.9 3.1	
Temperature	1.9	2.4	2.5	2.5	2.5	2.7	3.0	3.1	
19-Mar		_			8.6	8.5	8.5	8.7	
Dissolved Oxygen	11.4	9.9	9.3	8.8	3.8	3.8	3.8	3.8	
Temperature	3.9	3.8	3.9	3.8	3.0	3.0	3.0	3.0	
17-Apr				13.3	13.0	12.8	12.7	12.3	4.4
Dissolved Oxygen	12.4	13.2	13.4	6.9	6.9	6.9	6.8	6.8	6.8
Temperature	6.9	6.9	6.9	0.9	0.9	0.5	0.0	3.3	
14-May			10.1	10.2	10.0	9.8	8.9	8.0	7.3
Dissolved Oxygen	9.2	9.7	10.1	10.2	13.7	13.5	13.4	13.4	13.2
Temperature	14.6	14.3	14.2	14.1	13.7	13.5	15.4	10	
29-May	c =	0.0	9.8	9.0	8.3	8.2	6.1	5.2	4.1
Dissolved Oxygen	9.7	9.9	9.8 17.7	9.0 17.6	8.3 17.5	16.8	15.3	15.0	14.7
Temperature	17.8	17.8	17.7	17.0	17.5	10.0	13.5		
10-Jun		9.0	9.3	9.4	9.2	8.0	6.2	4.5	
Dissolved Oxygen	8.9	22.5	$-\frac{9.3}{21.0}$	20.7	20.2	19.1	18.3	17.8	
Temperature	22.5	22.3	21.0	20.7	20.2	2,12			
27-Jun		0.7	8.5	8.4	8.2	7.8	3.9	1.0	
Dissolved Oxygen	8.6	8.7	22.0	21.9	21.6	21.3	20.1	18.7	
Temperature	22.5	22.4	22.0	21.9	21.0	21.3	20.1		
17-Jul	0.6	8.6	8.5	7.9	7.5	6.8	5,8	2.3	
Dissolved Oxygen	8.6	25.1	24.7	23.9	23.1	22.8	22.5	22.5	
Temperature	25.4	23.1	24.7	25.7	23.1				
30-Jul	2.7	0.7	9.7	9.3	8.6	6.1	4.5	3.9	3.6
Dissolved Oxygen	9.7	9.7 24.3	24.2	23.7	23.4	22.8	22.3	22.2	22.1
Temperature	24.6	24.3	24.2	23.1	23.7	22.0			
8-Aug	0.0	0.7	9.3	9.3	6.5	4.8	3.9	2.2	1.0
Dissolved Oxygen	9.3	9.3 25.1	9.3 25.1	25.0	23.1	22.6	22.5	22.2	21.8
Temperature	25.3	23.1	23.1	23.0	23.1	22.0	4	-	
22-Aug	0.0	8.2	7.6	7.1	6.6	5.7	4.5	2.5	1.6
Dissolved Oxygen	8.0	24.0	23.5	23.5	23.5	23.0	23.0	22.5	22.5
Temperature	26.0	24.0		20.0	23.3	20.0			
5-Sep		12.0	10.2	9.2	7.9	7.1	6.4	4.9	4.5
Dissolved Oxygen	11.4	12.0	22.4	22.1	21.8	21.6	21.5	21.4	21.3
Temperature	24.2	23.2	22.4	44,1	21.0	21.0			
30-Sep		6.4	8.5	8.6	8.7	8.6	8.2	7.8	4.8
Dissolved Oxygen	8.7	8.4	8.3 17.8	17.7	17.6	17.6	17.5	17.4	17.5
Temperature	18.3	18.2	17.0	11.7	17.0				
29-Oct		0.6	9.2	9.2	9.3	9.3	9.2	9.2	
Dissolved Oxygen	10.0	9.5	9.2 13.1	13.1	13.2	13.2	13.2	13.2	
Temperature	13.2	13.2	1.1.1	447.4	1.5.2				

Table A-3. Results of pH Monitoring in Surface Waters at Stafford Pond (1996).

							Ma	nH (standard units))	l units))							
Sampling	SP1a	SP1b	SP1c	SP1d	SP1e	SP2	SP3	SP4	SP5a	SP5b	SP6	SP8	SP9	SP10	SP11	SP12
Date																
Dry Weather:						;	•	`		¥	3 3					
21-Feh	9.9				6.4	6.3	5.4	6.0		0.5	י ל					
201-12	10				7.0	7.0	7.0	7.0		6.5	2.7					
19-Mar) i				14			6.5		6.5	5.4					
17-Apr	6.7				ò				y y	y	5.4					
14-May	6.4				6.4			7.0		. v	• v				6.5	6.5
29-May	6.4				6.1			6.5		0.0	יי יי					
10 1	1.0				0.9			9.9		6.4	5.5		-			
unr-ot	2 .				6			6.7		6.4	9.6					
27-Jun	0.0	,	•		. 4			6.5		6.5	5.5					
17-Jul	6.7	6.7	9.0	0.0	4.0			3		!						
30-141	8.2				6.5			Ø.								
2 V V 0	o x				6.4		6.8	6.3								
Anu-o	. 4				0.9		7.0	7.0								
22-Aug	6.0	,	(•	, u		70	7.0								
5-Sep	9.5	0.6	7.0	ó	6.0		Ť.	0.7		,	9					
30.05	7.4				8.9			9.9		6.0	0.0					
dag-00					6.7			9.9	5.7	6.3	9.6					
78-Oct	ò															
7,000	73	7.9	8.9	9.9	6.4	6.7	7.3	9.9	5.6	6.4	9.5				6.5	6.5
Mean	į ,		7	. V	0.9	63	4.3	6.2	5.5	6.3	5.4				6.5	6.5
Minimum	6.4	0.7	0.0	C. 0	9 0	9 6	} ?	,		8.9	ot v				6.5	6.5
Maximum	9.5	0.6	7.0	6.7	0.7	0.7	4.4	0.7	'n	9	, ,					
Wet Weather:													;	1		
20-Mar										6.3	5.5	,	6.3	 		
16-Apr											1	0.0		•		
24-14											4.5		4.5	4.0		
12 Can										6.4	5.5	6.2	6.4			•
dac-71										8.9				9.6		
10-3ch																
Marin										6.5	5.2	6.1	5.7	5.1		
Mean										6.3	4.5	6.0	4.3	4.5		
Minimum										8.9	5.5	6.2	6.4	9.6		
Maximum														1		

Table A-4. Results of Total Alkalinity Monitoring in Surface Waters at Stafford Pond (1996).

Campling				Tota	Total Alkalinity (mg/L)	ty (mg/L)				
Date	SP1a	SP1e	SP2	SP3	SP4	SP5a	SP5b	SP6	SP11	SP12
Dev Weather:										
71 Feb	Ç		~	_	S		20	⊽		
05.1-17	, r	7	7	7	7		36	⊽		
19-Mar	- \	- (•	•	4		90	$\overline{\vee}$		
17-Apr	o	0) (ı) li			
14-May	7	7			7	n	Ç9	7 (ć	•
29-May	9	7			7		55	C	2	٥
10-Jun	7	∞			7		59	m		
27-Jun	∞	13			7		54	2		
17-Jul	7	×			8		64	3		
30-Jul	6	11			01					
8-Aug	6	13		6	6					
22-Aug	6	14		10	01					
5-Sep	10	11		Π	11					
30-Sep	6	6			0		99	⊽		
29-Oct	9	9			9	6	41	2		
``	r	c	¥	ø	œ	7	15	2	6	9
Mean	-	^	3	•		. 1	1 6	١,		`
Minimum	ς.	9	ć	, -	S	2	20	₹	2	0
Maximum	10	14	7	11	11	6	99	3	6	9

Table A-5. Results of Total Hardness Monitoring in Surface Waters at Stafford Pond (1996).

				Tota	Total Hardness (mg/L)	s (mg/L)				
Samping Date	SP1a	SP1e	SP2	SP3	SP4	SP5a	SP5b	SP6	SP11	SP12
Dev Weather										
Did Heatilei.	91		91	16	18		61	28		
21-re0	2 5	19	61	18	19		71	12		
19-iviai	27 =	<u> </u>	i I		18		44	11		
1/-Apr	9 00	2 2			81	24	70	12		
I4-May	07 9) <u>1</u>			61		83	Q/N	18	18
29-May	61	2 9			<u> </u>		106	Q/X		
10-Jun	13	18					2			
27-Jun	19	22			<u>×</u>		8			
17-Jul	16	17			81		104	QX		
30-111	19	19			18					
8-Ang	20	23		19	19					
22-4110	20	20		20	19					
S Con	21	21		19	20					
30-Sen	20	20			20		84	14		
29-Oct	19	19			19	30	59	N/D		
									,	,
Mean	19	20	18	18	19	27	28	15	<u>8</u>	<u>×</u>
Minimum	. 16	17	16	91	81	24	44	11	38	<u>∞</u>
Maximum	21	23	19	20	20	30	106	28	81	18
N/D= No Data, iron interference	n interferen	93	-							

Table A-6. Results of Conductivity Monitoring in Surface Waters at Stafford Pond (1996).

							Const	Candinativity (umbos/cm)	mpos/cm)					i		
Sampling	7,00	, too	cD12	Pids	SP1e	SP2	SP3	SP4	SP5a	SPSb	SP6	SP8	SP9	SP10	SP11	SP12
Date	SI/Ia	27.10	or it													
Dry Weather:					į	,	9	ç		000	150					
21-Reh	20				70	3	20	2		27	, ,					
701-17	6				65	70	65	65		220	C					
I 9-Mar	2 8				75			75		125	45					
17-Apr	90				2 6			80	110	260	80					
14-May	80				2			3 6		906	ç				100	001
20 May	80				80			2		SOS	2				•	1
27-Ividy	3 2				100			75		320	0 3					
10-Jun	001				91			110		360	011					
27-Jun	90				<u>3</u>			3.		300	70					
17-Jul	70	70	75	70	70			C :		2	2					
30 []	70				70			80								
mr-oc	2				80		80	80								•
8-Aug	og :				9 9		80	\$								
22-Aug	8			,	Ç Ç		3 8	3 6								
5-8cm	80	08	08	80	0 8		28	Q Q			i					
4000	8				06			90		310	75					
30-Sep	2 %				. œ			80	80	220	99					_
130-67	6															
,	ć	Š	9	75	80	65	8	08	95	27.1	80				8	100
Mean	2 :	2 6	96	2 5	33	3 9	55	65	80	125	45				901	<u>00</u>
Minimum	2	0 :	C 2	2 8	3 5	8 8	8 5	110	110	360	150				001	100
Maximum	100	8	⊋	⊋ ×	3	2	3	2	?		ļ					
11/24 11/2046.000																
wei weamen.										310	8		280	50		
20-Mar												110				
16-Apr											06		23.000	40		
24-Jul										000	Q 9	001	001			
12-Sep										780	2	2	77	•		
18-Sen										250				^		
L																
Magn								٠		280	11	150	7,800	22		
Mem										250	20	110	120	S		
Minimum										310	8	190	23,000	40		
Maximum										210	3		200,000	2		

Table A-7. Results of Turbidity Monitoring in Surface Waters at Stafford Pond (1996).

									A Adult							
Sampling	!		,		, Page	cas	T td3	Turbidity (ATO)	SP5a	SPSb	SP6	SP8	6dS	SP10	SP11	SP12
Date	SPla	SP1b	SP1c	SPId	SF 16	216										
Dry Weather:					(6	0.7		183	9.0					
21-Feb	8.0				0.0	0.0	- t	; ·		0	5.0					
10 3402	~				9.1	1.3	1.7	×.		. ·	,					
19-iviar	5:0				2.6			5.6		92	1.7					
I7-Apr	0.0				01			1.3	1.3	1.4	9.0				,	
14-May	1.4				? :			- 5		4.4	8.0				9.0	0.4
29-May	1:1				2 :			2		4.5	0.7				ē	
10-Jun	6.0				1.2			4 (, 4	y					
2.7	3.0				6.1			2.2		Ø. 4	0.0					
unr-17		1.5	5 1	2.2	1.4			3.8		4.0	6.0					
IJ-Jul	† ']	<u>;</u>		3.2			2.3								
30-Jul	2.5				i .		-	0.0								
8-Aug	3.1				7.7		<u>1</u>	0.7								
22-4 us	7.2				2.0		4.6	6.2								
9nU-77		3 00	6.3	3.0	2.6		19.5	4.8								
5-Sep	0.12	C. 67	š	e i	i v			6.1		8.0	8.0					
30-Sep	6.6				0.0					13	90					
29-Oct	1.5				6.0			0.7	† ,	<u>:</u>	9					
								•		Ç	0				90	0.4
	7.7	15.5	3.6	2.6	2.1	0.1	5.6	5.8	1.4	».	ø. 5				200	
Mean	10	21		2.2	0.6	9.0	0.7	0.7	1.3	1.3	0.4				0.0	† •
Minimum	0.0	29.5	5.7	3.0	8.9	1.3	19.5	6.2	4.	18.3	1.7				0.0	6.0
Mathiman	1	ì														
Wet Weather:										0.00	-		8	60		
20-Mar										0.40		30	;	,		
16-Apr											40	9.	8	1.1		
24-Jul											} -	٤3	. 0	!		
12-Sep										- · ·	2.	4	;	CO		
18-Sep										10.0				7		
										18.0	2.5	08	8.7	0.7		
Mean										2.5	-		6	0.0		
Minimum										50.0	2 4	4 0		-		
Marinum										39.0	4.9	10.8	5	7-1		
AVALLA STATEMENT																•

Table A-8. Results of Secchi Transparency Monitoring in Stafford Pond (1996).

	Secchi
	Transparency (m)
Date	SP1
19-Mar	1.2
17-Apr	1.0
14-May	1.8
29-May	2.9
10-Jun	2.7
27-Jun	1.4
17-Jul	2.1
30-Jul	1.3
8-Aug	1.5
22-Aug	0.8
5-Sep	0.5
30-Sep	0.9
29-Oct	0.8
Mean	1.5
Mininum	0.5
Maximum	2.9

Table A-9. Results of Chlorophyll <u>a</u> Monitoring in Stafford Pond (1996).

Sampling	Chlorophyl	l a (μg/L)
Date	SP1a	SP4
Dry Weather:		
21-Feb	6	6
19 - Mar	31	24
17-Apr	4	2
14-May	4	4
29-May	3	2
10-Jun	3	4
27-Jun	10	9
17-Jul	9	5
30-Jul	8	13
8-Aug	17	
22-Aug	9	13
5-Sep	118	43
30-Sep	<i>7</i> 9	69
29-Oct	11	11
Mean	22	16
Minimum	3	2
Maximum	118	69

Table A-10. Results of Nitrite+Nitrate Nitrogen Monitoring in Surface Waters at Stafford Pond (1996).

							N. N.	-ite-Nitra	Nigitation (mg/L)	(mo/L)							
Sampling Date	SP1a	SP1b	SP1c	SP1d	SP1e	SP2	SP3	SP4	SP5a	SP5b	SP6	SP7	SP8	SP9	SP10	SP11	SP12
Date Weather:												;					
or Par	0.04				0.17	80.0	0.10	80.0		1.44	0.16	0.22					
71-FCD	* 6				<0.03	<0.03	<0.03	<0.03		2.50	<0.03	<0.03					
I9-Mar	50.5				\$0 OS			<0.03		1.20	<0.03	0.05					
17-Apr	50.0				50.0			0.04	90.0	1,30	0.05	0.05					
14-May	0.07				5.0			50.0		1.60	90.0	0.07				0.05	90.0
29-May	0.16				0.08			60.0		0.48	<0.05	<0.03					
10-Jun	<0.03				<0.05 60.05			50.0		2 -	0.04	<0.03					
27-Jun	<0.03				<0.03			50.0		11.0		50.03					
17-Jul	90'0	0.03	0.03	0.04	0.07			0.05		07:0	0.00	60.07					
30-Jui	<0.03				<0.03			000									
8-Aug	<0.03				0.04		<0.03	<0.03									
22-Aug	<0.03				<0.03		0.03	€0.03									
SSen	0.0	0.06	0.03	0.04	90.0		<0.03	0.05			•	•					
do c	2002				<0.03			<0.03		0.27	<0.03	0.12					
30-3cp	0.15				0.16			60.0	<0.03	0.76	<0.03	0.18					
120-67	3																
7	0.05	0.05	0.03	0.04	0.05	0.05	0.04	0.04	0.04	0.99	0.04	80.0				0.03	0.00
Mean	3 6	0.00	0.03	0.04	<0.03	<0.03	<0.03	<0.03	<0.03	0.11	<0.03	<0.03				0.05	90:0
Minimum	(0.0)	0.0	9 6	20.0	2010	800	0.10	60.0	0.06	2.50	0.16	0.22				0.05	90.0
Maximum	0.16	0.00	0.03	50.0	2.5	0.00	2	2									•
Wet Weather:															o o		
20-Mar										1.40	<0.03 0.03		Ċ	1.30	0.0		
16-Apr											90.0		0.78	37.0	0.59		-
24-Jui										0.58	0.02 0.03		2.50	0.93			
12-Sep										08.0					0.07		
18-Sep										2.5							
1,700.		٠								0.83	0.03		1.64	1.07	0.25		
Mean										0.50	<0.03		0.78	0.78	0.07		
Minimum										1 40	0.05		2.50	1.50	0.59		
Meximum																	

Table A-11. Results of Ammonium Nitrogen Monitoring in Surface Waters at Stafford Pond (1996).

									A Nitrogen (me/L)	me/L)				ļ			
Sampling	CDIA	SPIR	Spic	SP1d	SP1e	SP2	SP3	SP4	SP5a	SP5b	SP6	SP7	SP8	SP9	SP10	SP11	SP12
Date Dry Weather: 21-Feb 19-Mar 17-Apr 14-May 29-May 10-Jun 27-Jun 17-Jul 30-Jul 8-Aug 22-Aug 5-Sep 30-Sep	0.14 0.17 0.13 0.10 0.09 0.09 0.10 0.10 0.10 0.11 0.15	0.08	0.14	0.15	0.17 0.17 0.13 0.06 0.14 0.18 0.18 0.28 0.31 0.48 0.13	0.09	0.17 0.22 0.05 0.18 0.08	0.12 0.28 0.18 0.13 0.10 0.09 0.09 <0.05 0.15 0.15	0.13	4.60 0.36 0.54 0.31 0.88 1.43 1.90 1.50	0.14 0.12 0.09 0.06 0.12 0.23 0.21 0.24	0.13 0.09 0.10 0.06 0.09 0.06 0.12 0.11				20.0	0.10
Mean Minimum Maximum Wet Weather: 20-Mar 16-Apr 24-Jul 12-Sep 18-Sep 18-Sep Mean Minimum Maximum	0.05 <0.05 0.44	0.15	0.23	0.23	0.19 <0.05 0.48	0.09	0.14 <0.05 0.22	0.12 <0.05 0.28	0.13	1.23 0.31 4.60 5.00 0.57 1.80 2.46 0.57 5.00	0.14 0.06 0.24 0.10 0.08 0.18 0.12 0.08	0.09	0.41 0.08 0.08 0.08	0.32 0.14 0.13 0.20 0.13	0.08 0.17 0.23 0.08 0.08	0.05	0.10

Table A-12. Results of Inorganic Nitrogen (NO2+NO3+NH4) Monitoring in Surface Waters at Stafford Pond (1996).

											-						
Sampling					1000	603	CD3	Inorganic Nitrogen (mg/L) SP4 SP5a SP	Vitrogen (n SP5a	g/L) SP5b	SP6	SP7	SP8	SP9	SP10	SP11	SP12
Date	SP1a	SP1b	SP1c	SPId	Srie	710											
Dry Weather:							700	000		6.04	0.30	0.35					
21-Feb	0.48				\$ C.3	71.0	77.0	02.0		2.86	0.14	0.17					
19-Mar	0.19				0.19	07.50	+7.0	200		1 74	0.11	0.14					
17-Apr	0.15				0.16			07.0	91.0	191	: T	0.15					
14-May	0.17				0.18			0.17	7	2070	0	0 13				80.0	0.16
29-May	0.22				0.14			C1.0		2.79	30.0	2 -					
10-Fm	0.11				91.0			0.12		1.71	0.20	11.0					
10-201					0.20			0.10		2.01	0.25	0.08					
27-Juli 17 Jul	0.28	0.11	0.17	0.19	0.41			0.22		1.76	0.27	0.14					
Inc-/ 1	27.0	;			0.30			0.11									
30-Jul	71.0				9000		0.04	0.04						÷			
8-Aug	<0.04				0.30		5 6	0.0									
22-Aug	0.13				0.50		17.0	2.5									
5-Sep	0.19	0.27	0.34	0.34	0.19		0.13	0.13		c c	0 17	0.15					
20 Can	7 0 0>				0.04			0.14		0.72	0.14	0.10					
29-0ct	0.24				0.26			0.22	0.14	1.09	0.12	0.29					
130-67																	,
•	•	9	70.0	77.0	0.24	0.19	0.18	0.16	0.17	2.22	0.19	0.17				0.08	0.16
Mean	71.0	2.0	07:0	0.19	0.04	0.17	0.0	0.04	0.14	0.72	0.11	80.0				0.08	0.16
Minimum	<0.05	0.11	0.17	7.0	500	0.00	0.27	030	0.19	6.04	0.30	0.35				80.0	91.0
Maximum	0.48	0.27	U.34	t.34	0.50	0.40											
Wet Weather:										,	,			÷	710		
20-Mar										6.40	0.12		-	70.	7.0		
16-Anr													1.19	. 6	25.0		
24-Jul										,	0.13		03 (76.0	2		
12-Sco										1.15	07.0		7.70	7.0	0.00		,
18-Sen										2.30					0.50		
														ţ	;		
Mean										3.28	0.15		1.89	17.1	14.0		
, , , , , , ,										1.15	0.12		1.19	0.92	0.17		
Minimum										6.40	0.20		2.58	1.82	0.76		
Maximum																	

Values less than (<) the detection limit were multiplied by 0.5 prior to averaging.

Table A-13. Results of Total Kjeldahl Nitrogen (TKN) Monitoring in Surface Waters at Stafford Pond (1996).

Sampling					cpto	cas	EdS	TKI SP4	TKN (mg/L) 4 SP5a	SPSb	SP6	74S	SP8	6dS	SP10	SP11	SP12
Date	SP1a	SPIb	SPIc	SF 10	Sr 16	7 10											
Dry Weather:							-			8	0.5	8.0					
21-Feb	0.7				o	o .	- -			2.5	0.7	0.1					
19-Mar	1.3				1:1	-:	1 .0	<u></u>		i -							
17 Apr	1.5				6.0			7.0		<u>.</u>	; t	2 4					
1dw-/1	3.0				0.5			9.0	8.0 8	1.4	0.7	6.5				ć	•
14-May	0.0				80			9.0		6.1	8.0	6.5				ر: ا	2.4
29-May	9.0				3 -			0.7		3.2	Ξ	8.0					
10-Jun	8.0				0.1			; =		(F)	0.2	0.1					
27-Jun	8.0).'O			: :				5.0					
17-hil	8.0	9.0	0.7	0.7	6.0			o: :		0.7	3	}					
30 141	1.0				1.2			0.1									_
Inc-oc					1.0		8.0	6.0									
8-Aug	C.D.						80	_									
22-Aug	6.0			,	0.1		2 -	: -									
5-Sep	1.4	1.6	1.2	1.0	0.1		<u>`</u>	- ·		01	0	90					
30.60	0.7							\		1.7) i					
30-3cp	200				1.1			1.3	1.1	0.5	1.2	0.7					
120-67	2															•	,
	(•	-	Ó	0.1	60	1.0	6.0	1.0	2.4	0.7	0.7					U.4
Mean	S	1:1	0.1) (9 4	70	70	0.4	80	0.5	<0.1	0.1				0.3	4.0
Minimum	0.5	9.0	0.7	0.7	o. o	9	.	; ;	; -	9	91	1.0				0.3	0.4
Maximum	1.5	1.6	1.2	1.0	1.6	Ξ		₹ :	=	o.c	:	2					
																•	
Wet Weather:										15.0	60			2.1	9.0		
20-Mar										9:	}		1.3				
16-Apr											1.7			2.5	1.0		
24-Jul										2.6	1.5		1.0	2.3			
12-Sep										1 7	!				0.2		
18-Sep										:			٠				
,										6.4	1.4		1.2	2.3	9.0		
Mean										1.7	6.0		1.0	2.1	0.2		
Minimum										15.0	1.7		1.3	2.5	1.0		
Maximum																	

Table A-14. Results of Total Nitrogen (NO2+NO3+TKN) Monitoring in Surface Waters at Stafford Pond (1996).

								Trees Mis	Total Mitmouth (may)	43							
Sampling	, de	2016	cpro	Spid	SP1e	SP2	SP3	SP4	SP5a	SP5b	SP6	SP7	SP8	SP9	SP10	SP11	SP12
Date Dry Weather: 21-Feb 19-Mar 17-Apr 14-May 29-May 10-Jun 27-Jun 17-Jul 30-Jul 8-Aug 22-Aug 5-Sep 30-Sep	0.7 1.3 1.5 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9	9.0	0.7	0.7	. 1.2 0.9 0.6 0.6 0.7 1.0 1.0 1.1 1.1	0.7	0.4 0.8 0.8 1.7	0.8 1.3 0.7 0.5 0.7 1.1 1.0 0.9 0.7 0.7	6.0	7.2 4.6 2.9 2.7 3.5 3.4 3.4 2.2 1.3	0.7 0.7 0.7 0.8 0.9 1.1 0.2 1.5	1.0 1.0 1.1 0.6 0.6 0.8 0.1 0.1 0.5				4.	0.5
Mean Minimum Maximum Met Weather: 20-Mar 16-Apr 24-Jul 12-Sep 18-Sep 18-Sep Mean Minimum	0.9	1.1 0.6 1.7 1.7	1.0	0.1	1.0 0.6 1.6	0.9	1.0 0.4 1.7	0.9	1.0	3.4 1.3 7.2 16.4 16.4 16.4	0.8 0.1 1.5 0.9 1.8 1.4 0.9	0.7	2.1 3.5 2.8 2.1 3.5	3.6 3.2 3.2 3.4 3.6 3.6	0.7 1.6 0.3 0.9 0.3	4.0 4.0 4.0	0.5
Maximum																	

Table A-15. Results of Total Phosphorus Monitoring in Surface Waters at Stafford Pond (1996).

Sampling					1	1 6	505	Total Pho	Total Phosphorus (mg/L)	ng/L) SPSh	9 d S	SP7	SP8	SP9	SP10	SP11	SP12
Date	SPIa	SP1b	SPIc	SP1d	Srie	7.JC	CIC	+ 10	40.10								
Dry Weather:											•						
21 Geb	0.040				0.040	0.030	0.040	0.040		1.900	0.040	0.040					
02.1-17	0.00				0.027	0.042	0.032	0.029		0.383	0.014	0.030					
Interior	0.032				0.00			0.040		0.720	0.040	0.040					
17-Apr	0.040				0.00			0.060	0.040	0.290	0.040	0.020					
14-May	0.020				0.000			000.0	2	0 433	6,000	0.004				0.018	0.010
29-May	0.019				0.033			0.025		0.433	0.04	P.00.0					
10-lun	0.025				0.037			0.041		0.433	0.110	0.030					
27-Ino	0.028				0.097			0.031		0.900	0.067	0.049					
17-ful	0.043	0.047	0.049	0.046	0.054			0.041		0.970	0.079	0.045					
30. lul	0.033				0.073			0.037									
0 A 10	0.049				9800		0.033	0.052									•
&-Aug	V-0.0				030.0		0 130	0.070									
22-Aug	0.046				0.039		0.130	0.00									
S-Sep	*0.053	*0.042	*0.039	*0.031	*0.042		*0.037	*0.022			4	*					
30-Sep	*0.047				+0.041			*0.032	,	677.7	*0.015	#20.0*					
29-Oct	*0.022				*0.027			*0.025	*0.137	0.640	•0.026	-0.023					_
		!	•	0	0	7600	7300	0200	0800	0.805	0.048	0.033				0.018	0.010
Mean	0.036	0.045	0.044	0.039	0.053	0.036	0.034	0.03	0.009	000	200	0000				8100	0.00
Minimum	0.019	0.042	0.039	0.031	0.027	0.030	0.032	0.022	0.040	0.2.0	61.0	070.0				0.018	0100
Maximum	0.053	0.047	0.049	0.046	0.097	0.042	0.130	6/0.0	0.137	617.7	0.110	0.049			t	2	
Wet Weather:															;		
20-Mar										3.170	610.0		0010	0.131	910'0		
16-Apr											0.063			0.294	0.016		
24-Jul										0.822	0.073		0.075	0.126			
18-Sep										3.070					0.043		
.											,				,		
Mean										2.354	0.052		0.133	0.184	0.025		
Adinimum										0.822	0.019		0.075	0.126	910.0		
Maximum								•		3.170	0.073		0.190	0.294	0.043		

Maximum
*Samples analyzed by the University of Rhode Island - Watershed Watch Program.

Table A-16. Results of Dissolved Phosphorus Monitoring in Surface Waters at Stafford Pond (1996).

Sampling	143	Tas	2100	PIdS	SPIe	SP2	SP3	Dissolved Phosphorus (mg/L.) SP4 SP5a SP5b	nosphorus SP5a	(mg/L.) SPSb	SP6	SP7	SP8	SP9	SP10	SP11	SP12
Date Dry Weather: 21-Feb 19-Mar 17-Apr 14-May 29-May 10-Jun 17-Jul 30-Jul 8-Aug 22-Aug	0.030 0.030 0.020 0.020 0.020 0.025 0.025 0.025 0.027 0.015	0.037	0.038	0.017	0.030 0.017 0.030 0.020 0.020 0.029 0.056 0.029 0.041 0.081	0.030	0.024 0.024 0.033 0.055	0.040 0.015 0.020 0.020 0.010 0.019 0.019 0.035 0.045 0.035	0.020	1.900 0.290 0.600 0.010 0.333 0.433 0.670 0.690	0.040 0.014 0.040 0.020 0.020 0.056 0.022 0.075	0.040 0.015 0.020 0.010 0.023 0.029 0.044 0.015				0.005	0.005
Mean Minimum Maximum Wet Weather: 20-Mar 16-Apr 24-Jul 12-Sep 18-Sep Mean Mean	0.023 0.009 0.046	0.037 0.037 0.037	0.038 0.038 0.038	0.017 0.017 0.017	0.033 0.017 0.081	0.023 0.015 0.030	0.038 0.024 0.055	0.027 0.010 0.045	0.065 0.020 0.109	0.618 0.010 1.900 2.700 0.632 2.210 1.847 0.632	0.038 0.014 0.075 0.055 0.058 0.058 0.058	0.024	0.150 0.074 0.112 0.074 0.150	0.027 0.092 0.097 0.072 0.027	0.015 0.016 0.020 0.017 0.015 0.020	0.005 0.005 0.005	0.005 0.005 0.005
Maximum										,							

*Samples analyzed by the University of Rhode Island - Watershed Watch Program.

Table A-17a. Results of Total Cadmium Monitoring in Surface Waters at Stafford Pond (1996).

SP1a SP1e SP3 SP4 SP5b SP6 SP8 S	Complina			To	Total Cadmium (mg/L)	n (mg/L)				
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0013 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	Date	SP1a	SP1e		SP4	SPSb	SP6		SP9	SPIG
4m <a href="https://doi.org/10</th><th>Dry Weather:
17-Jul
5-Sep
29-Oct</th><th>•</th><th></th><th></th><th><0.001</th><th></th><th></th><th></th><th></th><th></th></tr><tr><td>>>										

Table A-17b. Results of Dissolved Cadmium Monitoring in Surface Waters at Stafford Pond (1996).

Sunding						(B			
Date	SP1a	SP1e	SP3	SP4	SP5b	SP6	SP8	SP9	SP10
Dry Weather: 17-Jul 5-Sep	<0.001	<0.001	<0.001	<0.001					
Mean Minimum Maximum	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001					
Wet Weather: 12-Sep 18-Sep					<0.001	<0.001	<0.001	<0.001	<0.001

Table A-18a. Results of Total Lead Monitoring in Surface Waters at Stafford Pond (1996).

Sampling					Total Lead (mg/L)	(mg/L)				,
Date	SP1a		SP1e	SP3	SP4	SP5b	SP6	SP8	SP9	SP10
Dry Weather: 17-Jul 5-Sep 29-Oct	<0.005	0.00079	<0.005	<0.00\$	<0.00\$					
Mean Minimum Maximum	<0.00 5 <0.00 5 <0.00 5	0.00079 0.00079 0.00079	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005					
Wet Weather: 12-Sep 18-Sep						<0.005	<0.005	<0.005	0.030	<0.005

Table A-18b. Results of Dissolved Lead Monitoring in Surface Waters at Stafford Pond (1996).

Sampling				Ā	Dissolved Lead (mg/L)	d (mg/L)			
Date	SP1a	SP1e	SP3	SP4	SPSb	SP6	SP8	SP9	SP10
Dry Weather: 17-Jul	<0.005	<0.005		<0.005					
ď	<0.005	<0.005	<0.005	<0.005					
Mean	<0.005	<0.005	<0.005	<0.005					
Minimum	<0.005	<0.005	<0.005	<0.005					
Махітит	<0.005	<0.005	<0.005	<0.005					
Wet Weather: 12-Sep 18-Sep					<0.005	<0.005	<0,005	<0.005	<0.005

Table A-19a. Results of Total Copper Monitoring in Surface Waters at Stafford Pond (1996).

Compline				Total C	Total Copper (mg/L)	£.)			
Sampung Date	SP1a	SP1e	SP3	SP4	SP5b	SP6	SP8	SP9	SP10
Dry Weather: 17-Jul	0.03	0.03	ç	0.03					
5-Sep	0.01	10.0	0.07	20.0					
Mean	0.02	0.02	0.05	0.03					
Minimum	0.01	0.01	0.05	0.02					
Maximum	0.03	0.03	0.02	0.03					
Wet Weather: 12-Sep 18-Sep					0.03	0.01	0.05	0.02	0.03

Table A-19b. Results of Dissolved Copper Monitoring in Surface Waters at Stafford Pond (1996).

Samuling				Dissolved	Dissolved Copper (mg/L)	g/L)			
Date	SPla	SP1e	SP3	SP4	SP5b	SP6	SP8	SP9	SP10
Dry Weather: 17-Jul	0.02	0.02		0.02					
5-Sep	0.01	0.01	10.0	0.02					
Mean	0.05	0.02	0.01	0.02					
Minimum	0.01	0.01	0.01	0.02					
Maximum	0.02	0.02	0.01	0.02					
Wet Weather: 12-Sep 18-Sep		•			0.03	0.01	0.02	0.02	0.03

Table A-20a. Results of Total Aluminum Monitoring in Surface Waters at Stafford Pond (1996).

S.moling				Total Alu	Total Aluminum (mg/L)	/L)			,	
Date	SP1a	SP1e	SP3	SP4	SP5b	SP6	SP8	SP9	SF10	
Dry Weather: [7-Jul 5-Sep	<0.02 0.03	<0.02	0.14	<0.02 0.05						
Mean Minimum Maximum	0.02 <0.02 0.03	<0.02 <0.02 <0.02	0.14 0.14 0.14	0.03 <0.02 0.05						
Wet Weather: 12-Sep 18-Sep					0.35	0.83	0.19	1.10	<0.08	

Table A-20b. Results of Dissolved Aluminum Monitoring in Surface Waters at Stafford Pond (1996).

Compline				Dissolved /	Dissolved Aluminum (mg/L)	lg/1,)			
Sampling Date	SP1a	SP1c	SP3	SP4	SPSb	SP6	SP8	6dS	SP10
Dry Weather: 17-Jul 5-Sep	<0.02	<0.02	0.02	<0.02					
Mean Minimum Maximum	0.02 <0.02 0.03	<0.02 <0.02 <0.02	0.02 0.02 0.02	0.03 <0.02 0.04					
Wet Weather: 12-Sep 18-Sep					<0.08	0.63	0.13	0.15	<0.08

Table A-21. Results of Total Calcium Monitoring in Surface Waters at Stafford Pond (1996).

Sampling				Total Ca	Total Calcium (mg/L)	ĵ			
Date	SP1a	SP1e	SP3	SP4	SP5b	SP6	SP8	SP9	SP10
Dry Weather:									
17-Jul	4.4	4.3		4.6					
5-Sep	4.3	4.4	4.1	4.6					
Mean	4.4	4.4	4.1	4.6					
Minimum	4.3	4.3	4.1	4.6					
Maximum	4.4	4.4	4.1	4.6					
Wet Weather: 12-Sep 18-Sep					20.0	2.2	13.0	5.9	0.5

Table A-22. Results of Total Magnesium Monitoring in Surface Waters at Stafford Pond (1996).

SP1a SP1e SP3 SP4 SP5b SP6 1.5 1.5 1.6 1.6 1.6 1.6 1.5 1.7 1.6 1.6 1.5 1.7 1.6 1.6 1.5 1.7 1.6 1.6 1.5 1.7 1.6 1.6 1.5 1.7 1.6 1.5 1.7 1.6 1.6 1.5 1.7 1.6 1.6 1.5 1.7 1.6 1.6 1.5 1.7 1.6 1.6 1.5 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	Sampling				Total Mag	Total Magnesium (mg/L)	g/L)			
1.5 1.5 1.6 1.5 1.5 1.4 1.6 1.5 1.5 1.4 1.6 1.5 1.5 1.4 1.6 1.5 1.5 1.4 1.6	Date	SP1a	SP1e	SP3	SP4	SP5b	SP6	SP8	SP9	SP10
1.5 1.5 1.6 1.5 1.5 1.4 1.6 1.5 1.5 1.4 1.6 1.5 1.5 1.4 1.6 1.5 1.5 1.4 1.6										
1.5 1.5 1.4 1.6 1.15 1.5 1.4 1.6 1.15 1.5 1.4 1.6 1.15 1.5 1.4 1.6 1.15 1.5 1.7 1.0 1.10 0.9	Dry Weather: 17-Jul	1.5	1.5		1.6					
um 1.5 1.5 1.4 1.6 um 1.5 1.5 1.4 1.6 um 1.5 1.5 1.4 1.6 zather:	5-Sep	1.5	1.5	1.4	1.6					
um 1.5 1.5 1.4 1.6 um 1.5 1.5 1.4 1.6 sather: 7.0 0.9	Mean	1.5	1.5	1.4	1.6					
um 1.5 1.5 1.4 1.6 sather: 7.0 0.9	Minimum	1.5	1.5	1.4	1.6					
7.0 0.9	Maximum	1.5	1.5	1.4	1.6					
	Wet Weather: 12-Sep 18-Sep					7.0	0.9	2.3	6.0	.0.1

Table A-23. Results of Total Sodium Monitoring in Surface Waters at Stafford Pond (1996).

Compline				Total Sc	Total Sodium (mg/L)	S	İ		
Sampung Date	SP1a	SP1e	SP3	SP4	SP4 SP5b	SP6	SP8	SP9	SP10
Dry Weather:									
17-Jul	9.1	8.9		6.7					
5-Sep	9.2	9.4	9.4	9.5					
Mon	9.2	9.2	9.4	9.6					
Minimum	9.1	8.9	9.4	9.5					
Maximum	9.2	9.4	9.4	6.7					
Wet Weather: 12-Sep 18-Sep					36.0	8.2	26.0	13.0	<0.5

Table A-24. Results of Total Chloride Monitoring in Surface Waters at Stafford Pond (1996).

Compling				Total Ch	Total Chloride (mg/L)	L)			
Date	SP1a	SP1e	SP3	SP4	SP4 SP5b	SP6	SP8	SP9	SP10
Dry Weather:				;					
17-Jul	20	20		21					
5-Sep	22	21	21	22					
Moon	21	21	21	22					
Minimum	70	20	21	21					
Maximum	22	21	21	22					
Wet Weather: 12-Sep					78	61	46	26	4
18-Sep									,

Table A-25. Results of Dissolved Iron Monitoring in Surface Waters at Stafford Pond (1996).

Samuling				Dissolve	Dissolved Iron (mg/L)	ũ			
Date	SPia	SP1c	SP3	SP4	SP5b	SP6	SP8	SP9	SP10
Dry Weather: 17-Jul	0.07	80.0		0.05					
5-Sep	90.0	0.10	0.04	0.05					
Mean	0.07	0.09	0.04	0.05					
Minimum	90.0	0.08	0.04	0.05					
Maximum	0.07	0.10	0.04	0.05		٠			
Wet Weather:					0.61	0.94	0.09	60.0	
18-Sep									⊘ .08

Table A-26. Results of Dissolved Manganese Monitoring in Surface Waters at Stafford Pond (1996).

Compling				Dissolved M	Tanganese (mg/L)			
Date	SP1a	SP1c	SP3	SP4	SP4 SP5b SP6	SP6	SP8	SP9	SP10
Dry Weather:									
17-Jul 5-Sep	0.01	0.08	0.01	0.01					
Mean Minimum Maximum	0.01 0.01 0.01	0.09	0.01	0.01					
Wet Weather: 12-Sep 18-Sep					0.15	0.03	0.05	0.02	0.01

Table A-27. Results of Total Petroleum Hydrocarbon Monitoring in Surface Waters at Stafford Pond (1996).

			5	D. Amelone	Transform Wadrocarhon (mg/L)	in (mg/L)			
Sampling Date	SP1a	SP1c	lotal SP3	SP4	SPSb	SP6	SP8	SP9	SP10
				[
Dry Weather: 17-Jul	3.2	2.7	4	2.7					
30-Jul 5-Sep	<0.5	<0.5	<0.5	<0.5					
Mean Minimum Maximum	1.7 <0.5 3.2	1.5 <0.5 2.7	<0.5 <0.5 <0.5	1.5 <0.5 2.7					
Wet Weather: 12-Sep 18-Sep					<0.5	<0.5	<0.5	0.9	<0.5

Table A-28. Results of DDT and PCB Monitoring in Surface Waters at Stafford Pond (1996).

										2	0 50	Oug	SP10
				25	1,5	53	Sp4	4	SpSb	odo	oric	<u> </u>	}
		SPla	la L	obic	2	2 ;		5 G.22		12-Se	12-Sep (wet weather)	her)	
•	Timite	17.111	5-Sep	17-Jul	5-Sep	S-Sep	Inf-/1	7-0-6					
Analyte	OIIIIS		li									1	
						1		3000	<0.05	<0.05	<0.05	<0.05	CO:0>
	7,50	<0.05	<0.05	<0.05	<0.05	\$0.0≥ \$0.0≥	<0.0>	6.0.	6.00				
4,4'-DD1	20	<u>;</u>									•	4	201
PCR.					i	,	4 6 /	\ \ \ \	<0.5	⊘ .5	₹ 0.5	Ç.⊝	?
	5	V C	<0.5	<0.5	<0.5	?; }	?	?	•	Ç	4	V	⊘ 05
Aroclor 1016	ng/L	7.7	5		v 9/	\$ O >	0.12	<0.5	<0.5	(C)	7.0	7.7	, ų
Azoclor 1221	ug/L	0.1 ×	Ç. ⊖	0.1^		9 9	90	\$ C \	√ 0.5	<0.5	<0.5	<0.5	C.U>
A100101 1221) [*]	30	< U>	<0.5	0.5	?; 	C:0>	7.7	} '		4 0	\ \ \	<0>
Aroclor 1232	ng/I,	2	2 :	,	V ()	S 0 >	<0>	<0.5	<0.5	Ç.Ş	<u>.</u>	?	
A 20010r 1242	l ug/L	\$.0 \$0.5	<.0>	C.U.S			3 0	V 0	<0>	<0.5	<0.5	<0.5	Ç. ⊝
A100001) ·	30%	<0>	<u></u>	<0.5	Ç;	CO>	?) (, c	30	\$ 0×	2 0 5
Aroclor 1248	л⁄8n I	?	9 0	Ş	V 0/	\$ C	<0.5	<0.5	0 .5	<u.></u.>	7)	, (
1254 June 1254	ng/L	<0.5	Ç;}	CO>	2.57	9 9	, u	V	\$ 0 \$	<0.5	<0.5	<0.5	0.0
ALOCIOL ISLA) [7	205	<0.5	<0.5	Ç.O	<0.0	70.7	2.5				
Aroclor 1260	ng/L	?					ì						

Table A-29. Results of Polynuclear Aromatic Hydrocarbon Monitoring in Surface Waters at Stafford Pond (1996).

										*	Wet Weather	١.	
		2		J	Snle	Sm3	Sp4	4	Sp5b	9dS	Sp8	Sp9	SP10
•	. # j 1 I	17 [11]	Sr 14	le [⊪[-/_1	5-Sen	5-Sep	17-Jul	5-Sep	12-Sep	12-Sep	12-Sep	12-Sep	18-Sep
Analyte	Office	1116-71	don'r										
			•	7	7	7	V	⊽	⊽	⊽	⊽	⊽	⊽
Acenaphthene	ug/L	⊽	⊽ .	√	7	7 .	, ,	7	7	7	V	⊽	~
Acceptable	110/1	⊽	⊽	⊽	⊽	⊽	⊽	7	7	7	7	; •	• •
Accilapitutyiene	A .	. 7	\ 	V	⊽	~	⊽	⊽	⊽	⊽	⊽	⊽	
Anthracene	Jæn	7 5	7 7	7	7	√ ∨	⊽	▽	⊽	⊽	⊽	⊽	⊽
Benzo(a)anthracene	ug/L	⊽ '		7 7	7 7	7 7	. ∠	' ⊽	⊽	⊽	⊽	∇	⊽
Benzo(b)fluoranthene	ng/L	⊽	⊽	₹ .	7 7	7 5	7 7	7	∵ ⊽	⊽	⊽	⊽	⊽
Benzo(k)fluoranthene	ng/L	⊽	<u>v</u>	⊽	⊽	₹ '	7	7 7	7 7	; ;	. 4	√ ⊽	⊽
Benzolohi)nervlene	ng/L	⊽	⊽	▽	⊽	⊽	<u></u>	⊽		7 7	7 7	7 7	: 7
	L'ou	⊽	~	<u>v</u>	⊽	⊽	⊽	⊽	⊽	⊽	<u>.</u>	₹ '	 7
Бепzо(а)ругепе	T An	7	7	\	⊽	⊽	7	⊽	⊽	⊽	⊽	⊽	⊽
Chrysene	л/an	7 3	7 5	7 7	7	. △	V	$\overline{\vee}$	▽	⊽	⊽	⊽	⊽
Dibenzo(a,h)anthracene	лgn	₹ ·	7 ⁷	7 5	7 7	7	. △	∇	⊽	⊽	⊽	⊽	⊽
Fluoranthene	7/gn	▽ '	√ .	7 7	7 7	7 7	- - -	. △	⊽	⊽	⊽	⊽	⊽
Fluorene	ng/L	⊽	▽ '	⊽ .	7 5	7 5	7 7	7	. △	√	V	⊽	7
Indeno(1,2,3-cd)pyrene	ng/L	⊽	<u>⊽</u>	<u>~</u>	√ ' 	7 3	7 %	; ;	: 7	. △	~	⊽	7
2-Methylnaphthalene	ng/L	⊽	⊽	⊽	⊽	✓ '	7 5	7 5	7 7	7 7	' 7	` ⊽	- V
Naphthalene	ng/L	⊽	⊽	⊽	⊽	⊽	⊽	₹.	7 *	7 7	7 7	7 7	. 7
Phenanthrene	ug/L	▽	⊽	⊽	⊽	⊽	⊽	⊽ '	⊽ '	⊽ :	7 ₹	7 5	7 7
Purene	ug/L	▽	⊽	⊽	⊽	⊽	⊽	⊽	⊽	⊽	▼	7	7
r Jacks	Ž												

Table A-30a. Data Quality Monitoring - Comparison of Duplicate Samples from SP1a.

		Sample			Duplik	ate Sampl	Duplicate Samples from SP1a	la		
Parameter	Units	Analysis	8-Aug		22-Aug	PV.	5-Sep		30-Sep	
				-						
Total Alkalinity	mg/L	Fugro	6	6	6	10	10	01	QN	ND
	mg/L	Fugro	20	20	20	20	21	20	QN	ΩN
Ha	ns	Fugro	8.9	8.9	8.5	8.5	9.5	9.5	7.4	7.4
Conductivity	umhos/cm	Fugro	QN	QN	06	75	80	08	92	06
Turbidity	NTU	Fugro	3.1	2.8	7.2	0.9	21	19	10	6
Fecal coliform	#/100 mL	Mitkem	⊽	▽	$\overline{\lor}$	2	7	4	5	7
Fecal streptococcus	#/100 mL	Mitkem	9	2	_	▽	4	4	⊽	10
Ammonia	mg/L	Mitkem	<0.05	<0.05	0.11	0.20	0.31	0.15	0.13	<0.05
Nitrite+Nitrate	mg/L	Mitkem	0.26	<0.03	<0.03	0.03	0.05	0.04	<0.03	0.03
TKN	mg/L	Mitkem	6.0	0.5	1.0	6.0	1.4	2.0	0.8	0.7
Dissolved Phosphorus	mg/L	Mitkem	0.072	0.027	0.051	0.052	ND	ΩN	QN	ΩZ
Total Phosphorus	mg/L	Mitkem	0.072	0.049	0.046	0.050	ND	QN	0.08	0.28

Table A-30b. Data Quality Monitoring - Total Phosphorus Comparisons between Laboratories.

			Duplicate	Samples		
	5-Se	ep	30-8	Бер	29-0	Oct
Station	URI	Mitkem	URI	Mitkem	URI	Mitkem
SP1a	0.05	0.06	0.05	0.08	0.02	0.06
SP1e	ND	ND	0.04	0.10	0.03	0.07
SP4	ND	ND	0.03	0.42	ND	ND
SP5b	ND	ND	2.30	3.60	0.64	0.53
SP6	ND	ND	0.02	0.21	ND	ND
SP7	ND	ND	0.02	0.35	ND	ND

URI= University of Rhode Island, Kingston, Rhode Island.

Mitkem= Mitkem Corporation, Warwick, Rhode Island.

APPENDIX B CALCULATIONS

 _	dro ogio	e Calcu	ulations			TUGRO .
Water	sned Yie	d	i i i i i i i i i i i i i i i i i i i			
111 4		$a \lor a = 2$	octs/s	a, mi of o	drainage &	Dr.eg
HISTORI:	C. V.Edioz	$=$ \bar{l}	781,700 CH	m/yr per	trainage s	nage
	o and annual enteringer	,	, , , , , , , , , , , , , , , , , , , ,	_ / /		
For St	afford P. Ava, flo	w = 2,6	ed = 947 36,400 cu	m/yr fr	48 sq. mi om waters	hed
.,		er en	<u>,</u>		1222018 103	
Add	Precip. a	live ct to	fond @ 1	1.14 m on 1	,979818 m	- 2,200,00
· ·		4 886 4	00 m3700			and the same of th
lotel	riow =	4,000,1	00 m3/yr			
Pand	Yield CI	996)	-			
	,, C 184 - C4	The second secon	and the second s	······································	granda ing izani di ing	and the second section of the second
Ava. m	easured	outflow	= 4,7 cfs :	= 4,187,00	o myr	, and the second
EVARON	ration =	2/3 of Pro	221/Pa	= 1,500,00	o milyr o	
Withd	rawai =	\$37,000, 9	= 4,7 cfs	= 1,151,00	DO M3/AL	
	management of the second		ing of the second second		.3/	
Tai	varing zmu	outsepane,	Total =	6,838,00	o m/yc	e de la companya de l
		The second secon			Luc I	button not t
Howen	er, 1996	precip wa	s 12-20 3	e above no	rmal, and A	dispresentions
Howen	en, 1996 Hing flow	precip wa < 5,470,	s 12-20 5	E above no	increases	disproportions Slow in Nov-
Howev 	er, 1996 Hing flow	precip. wa < 5,470,	$12-20^{\circ}$	E above no (flow to	rmal, and N increases precipilou	disproportions flow in Nov-
Howen Suggest	en, 1996 Hing flow	precip. wa < 5,470,	$12-20$ 000 m^3/yr	E above no (flow to	rmal, and A increases precipilou	disproportions flow in Nov-
Howen Suggest	en, 1996 ling flow	precip. wa < 5,470,	s 12-20 3 000 m ³ /yr	E above no (flow to	rmal, and N Increases precipilou	والعرضون والمهيرة أرداد المداد المداد المداد
Howev Suggest Export	en, 1996 Hing flow Coeffic	precip. wa < 5,470,	s 12-20 3 000 m ³ /yr	E above no (flow to	precipilow Runoff	cfs Base c
Howen Suggest	ing flow Coeffic Area C	precip. wa < 5,470,	cfs e = /sq	E above no (flow to	rmal, and A increases precipilous * Runoff 013	cfs Base c
Hower Suggest Export Basin	Flow Coeffice Area (precip wa < 5,470, elevots ac) (sq.mi) 0.148 0.309	cfs e =/sq 0.30 0.62	to Record or 26	rmal, and A increases precipijlow Runoff 0.13 0.35	cfs Base c 0.17 0.27
Howev Suggest Export	Flow Coeffice Area (precip wa < 5,470, iewts ac) (sq.mi) 0.148 0.309 0.127	cfs e ² /sq 0.30 0.62 0.25	R above no (flow) to to Recoeff 0,26 0,34 0,28	rmol, and A Increases precipilou Runoff 0.13 0.35 0.12	cfs Base c 0.17 0.27 0.13
Hower Suggest Export Basin	Flow Coeffice Area (precip wa < 5,470, ieuts ac) (sq.mi) 0.148 0.309 0.127 0.481	cfs @ ² /sq 0.30 0.62 0.96	Reserve no (F/ow) to to 126 0.26 0.19	rmol, and A Increases precipilow Runoff 0.13 0.35 0.12 0.30	cfs Base c 0.17 0.27 0.13 0.66
Hower Suggest Export Basin	en, 1996 Hing flow Coeffic Area (95 198 81	precip wa < 5,470, iewts ac) (sq.mi) 0.148 0.309 0.127	cfs e ² /sq 0.30 0.62 0.25	Reserve no (F/ow) to to 10.26 0.34 0.19 0.30	Runoff 0.13 0.12 0.13	cfs Base c 0.17 0.27 0.13 0.66 0.14
Hower Suggest Export Basin	Area C 95 198 81	precip wa < 5,470, ieuts ac) (sq.mi) 0.148 0.309 0.127 0.481	cfs @ ² /sq 0.30 0.62 0.96	Reserve no (F/ow) to to 126 0.26 0.19	rmol, and A Increases precipilow Runoff 0.13 0.35 0.12 0.30	cfs Base c 0.17 0.27 0.13 0.66
Hower Suggest Export Basin	Area (95 198 81 308	precip. wa < 5,470, iewts ac) (sq.mi) 0.148 0.309 0.127 0.481 0.134	cfs e =/sq 0.30 0.62 0.25 0.56	Reserve no (F/ow) to to 10.26 0.34 0.19 0.30	rmol, and A increases precipilow Runoff 0.13 0.35 0.12 0.30 0.13	cfs Base c 0.17 0.27 0.13 0.66 0.14 0.34
Hower Suggest Export Basin	Area (95 198 81 308	precip. wa < 5,470, iewts ac) (sq.mi) 0.148 0.309 0.127 0.481 0.134	cfs e =/sq 0.30 0.62 0.25 0.27	Reserve no (F/ow) to to 10.26 0.34 0.19 0.30	Runoff 0.13 0.12 0.13	cfs Base c 0.17 0.27 0.13 0.66 0.14
Hower Suggest Export Basin 1 2 3 4 5	en, 1996 Hing flow Coeffic Area (95 198 81 308 86 179	precip. wa < 5,470, elevots 0.148 0.309 0.127 0.481 0.134 0.280	cfs e = /sq 0.30 0.62 0.25 0.56 2.96	Reserve no (F/ow) to	* Runoff 0.13 0.35 0.12 0.30 0.13 0.22 1.25	cfs Base c 0.17 0.27 0.13 0.66 0.14
Hower Suggest Export Basin 1 2 3 4 5 6	1996 Hing flow Coeffic Area (95 198 81 308 86 179	precip. wa < 5,470, iewts ac) (sq.mi) 0.148 0.309 0.127 0.481 0.134 0.280	cfs e =/sq 0.30 0.62 0.25 0.56	Reserve no (F/ow) to	* Runoff 0.13 0.35 0.12 0.30 0.13 0.22 1.25	cfs Base c 0.17 0.27 0.13 0.66 0.14
Hower Suggest Export Basin 1 2 3 4 5 6	en, 1996 Hing flow Coeffic Area (95 198 81 308 86 179	precip. wa < 5,470, iewts ac) (sq.mi) 0.148 0.309 0.127 0.481 0.134 0.280	cfs e = /sq 0.30 0.62 0.25 0.56 2.96	Reserve no (F/ow) to	* Runoff 0.13 0.35 0.12 0.30 0.13 0.22 1.25	cfs Base c 0.17 0.27 0.13 0.66 0.14 0.34
Hower Suggest Export Basin 1 2 3 4 5 6	Coeffice Area (95 198 81 308 86 179	precip wa 25,470, iews iews iews 0.148 0.309 0.127 0.481 0.134 0.280 eff cfs	cfs e = /sq 0.30 0.62 0.25 0.56 2.96	Recent (f/o w) to	* Runoff 0.13 0.35 0.12 0.30 0.13 0.22 1.25	cfs Base c 0.17 0.27 0.13 0.66 0.14 0.34

INETERMINATION OF BASIN RUNOFF COEFFICIENTS	UNOFF CO	EFFICIENT	S		 ;		-						
				RASIN	RASIN AREAS					BASIN RUNOFF/YEAR	CHIVEAR		
	Kunom	1		1000	200	DACINIE	DACINE	BASIN 1	BASIN 2	BASIN 3	BASIN 4	BASIN 5	BASIN 6
	Coefficient	BASIN 1	BASIN 2	BASIN 3	BASIN 4			í		ĺ	íá	(C) M/YR)	(CU M/YR)
UC1 (14 v)		ARFA (HA) AREA (I	₹	AREA (HA)	AREA (HA) AREA (HA) AREA (HA)		AREA (HA)	(CC.MYR)	3		21.00	20,000	
LAND USE		4 04	3	0.65	0.53	1.35		4606	130553	2964	7147	0010	
Urban 1 (LDR)	0.40	0.	20.02	0 0	-	C	900	2679	44118	13566	7353	28500	342
11rban 2 (MDR/Hwv)	0.50	0.47	7.74	!	67.	0.0	1:0) (T	1	[C	23119	12107
II than 3 (HDR/Com)	0.60	0.00	1.44	3.72	!	3.38		1 .	000		C	0	0
Listan 4 (Ind)	09.0				:		1		1100		1	9667	56726
(O)(O)(O)	0.40	6.43	1.69			2.12	12.44	29321	00.	2	0		
Orban 5 (P/II/NO)	0.15	:						O !	0	0	י ס ו	0.00	0
Agric 1 (CVI Crop)	2 6		00.0			1.99		Ф	9	0	0	7/90) !! !!
Agric 2 (Row Crop)	0.75				1	4 84		0	10978	10636	0	16553	0
Agric 3 (Grazing)	0.30	į	3.21	3.1.5	:	0) i C			-	4720	0
Agric 4 (Feedlot)	0.45				1	<u> </u>	1	- !' -	64612	ADAR	251575		117067
Forest 1 (Upland)	0.23	28.21	25.19	19.28	98.08	60.7	42.04	EC77	:		1	!	0
Forest 2 (Wetland)	0.05		-	!		1		> 0		900	14045	4504	6390
Osc 4 Mottand/Lake)	0.05	! !		3.63	24.64	8.06	-	1) 			!!!	1
Open I (Venandirano)		75.0	A 28		! !		1.36	4001	9200	2	O i) ·	2222
Open 2 (Meadow)) (1		5	30917	0	0	0	0
Open 3 (Excavation)	0.40		ا ہ					0	0	0	0	0	0
Other 1	0.10									0	0	0	0
Other 2	0.35					-						0	0
Other 3	0.60		:					-					
		38 46	: 30 05	32.77	124.54	34.75	72.48	112984	307940	104133	275390	117166	194957
TOTAL		2) }		<u> </u>	1							
			-		-		1	438978	913748	374004	1421375	396602	827214
Total Rainfall on Basin (cu.m/yr)				-		-			;	į			
							:	0.26	0.34	0.28	0.19	0:30	0.24
Calculated Runoff Coefficient													

.

DAILY PRECIPITATION (INCHES) FOR PROVIDENCE GREEN ST, RI YEAR: 1996 NOV DEC OCT AUG SEP JUL MAY JUN APR MAR JAN FEB 0.00 0.14 0.00 DAY 0.28 0.02 0.00 0.00 0.07 0.00 0.00 0.00 0.02 0.13 1 0.00 0.00 0.02 0.00 0.30 0.52 0.03 0.00 0.07 Tr 2 0.00 0.00 0.51 0.25 0.45 0.00 0.02 0.22 0.09 0.00 0.00 3 0.01 0.00 0.34 0.00 0.18 TT 0.00 0.00 Tr 0.00 0.01 4 0.00 0.00 0.07 0.00 0.03 Tr 0.19 0.00 0.00 0.00 TI 5 0.00 0.00 Tr 0.00 0.26 Tr 0.83 0.00 6 0.00 0.16 0.00 0.00 1.21 0.00 0.00 0.00 0.42 0.00 0.48 0.08 0.06 2.06 7 0.02 0.00 0.00 0.18 0.00 0.03 0.03 Tr 8 0.12 0.30 0.53 0.02 Tr 0.00 Tr 0.03 0.32 0.00 0.12 0.00 9 Tr 0.01 0.07 0.01 0.00 0.05 0.13 0.27 0.00 0.00 10 0.05 0.00 0.00 0.00 0.00 Tx 0.00 0.15 0.00 Tr 0.27 0.00 0.00 0.00 11 0.04 0.00 0.00 0.10 Tr 0.04 0.00 0.00 1.08 Tr 0.00 12 0.13 0.93 3.56 0.00 0.04 0.00 0.00 0.00 0.00 0.00 Tr 13 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.16 0.00 0.00 0.00 14 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 15 0.00 0.00 2.00 0.00 0.47 0.00 0.05 0.00 TT 0.93 0.00 0.00 16 0.00 0.03 0.00 0.14 0.00 Tr 0.03 Tr 0.00 17 0.00 1.91 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.04 0.00 0.25 18 0.00 0.00 0.10E 0.10 0.00 0.00 0.00 0.04 0.00 0.98 2.81 19 0.00 0.00 0.00 0.46 0.00 0.00 0.64 0.00 0.00 0.00 0.00 20 0.00 Tr 0.00 0.19 0.14 Tr 0.00 0.73 Tr 0.10 0.00 21 0.41 0.00 0.00 0.00 0.02 Tr 0.00 Tr 0.00 0.26 0.00 0.34 22 0.44 0.05 Tr 0.00 Tr 0.04 0.02 0.00 0.00 23 0.01 0.05 0.00 0.39 0.35 T 0.04 0.00 0.85 0.57 0.00 24 0.00 0.17 0.01 0.04 0.00 0.00 Tr Tr Tr 0.00 0.00 1.41 25 0.00 0.07 0.01 0.00 0.03 0.00 0.01 0.00 0.00 26 0.00 0.00 0.00 0.00 0.00 0.00 Tr 0.00 0,00 0.02 1.42 0.00 27 0.21 0.45 0.03 Tr 0.00 0.00 0.00 0.00 0.13 Tr 0.00 0.00 0.00 28 0.24 Tr 0.00 Tr 0.69 0.00 0.00 0.11 0.00 0.01 0.12 29 0.00 0.22 0.00 0.00 0.50 0.36 0.02 Tr 30 0.00 0.44 0.00 0.00 0.01 31 2.23 5.75 6.23 5.49 2.19 2.17 4.88 2.44 2.71 2.19 4.38 5.02 TOTAL 3.69 4.43 3.48 3.33 3.18 3.63 3.76 4.05 4.11 3.61 3.88 NORMAL

---- = missing data

Tr = a trace

= accumulation over one or more previous days

S = value is included in a subsequent value

Observation time - Midnight

Data for November 15-30 is preliminary.

This report was prepared by the Northeast Regional Climate Center.

+ normal Dec. value -> 1996 Precip. = 45.68"

```
DAILY PRECIPITATION (INCHES) FOR NEWPORT, RI
YEAR: 1996
                                                                                 NOV
                                                                                        DEC
                                                                          OCT
                                                                   SEP
                                                     JUL
                                                            AUG
                                              JUN
                               APR
                                      MAY
                        MAR
                 FEB
          JAN
                                                                         0.00
DAY
                                                           0.90
                                                                  0.00
                                             0.00
                                                    0.22
                                      0.35
                              0.00
                       0.00
                0.09
         0.00
                                                                         0.00
                                                           0.90
                                                                  0.80
                                                    0.00
                              1.00
                                      0.00
                                             0.00
                        0.00
                0.02
 2
                                                                         0.01
                                                                  0.05
                                                    0.00
                                                             Tr
                                               Tr
                                      0.00
                              0.00
                        0.57
                0.41
         1.00
                                                                  0.00
                                                                         0.00
                                                           0.00
                                             0.38
                                                    1.04
                                      0.45
                              0.00
                          Tr
                0.00
         0.01
                                                                         0.00
                                                                    Tr
                                                    0.00
                                                           0.00
                                      0.05
                                               Tr
                               0.00
                0.00
                        0.00
         0.00
                                                                    Tr
                                                                         0.00
                                               Tr
                                                    0.00
                                                           0.00
                                 Tr
                                      0.17
                0.00
                        0.40
         0.00
                                                                         0.00
                                                                    Tr
                                                           0.00
                                               Tr
                                                    0.00
                               0.02
                                      0.13
                        0.65
         0.00
                0.00
                                                                         0.00
                                                                  3.70
                                                           0.00
                               0.85
                                      0.07
                                                      Tr
                                               Tr
                        0.29
                   TT
         0.70
 8
                                                                  0.01
                                                                         2.80
                                                    0.08
                                                           0.00
                                             0.03
                                        Tr
                                 Tr
                        0.07
         0.05
                 0.17
 9
                                                                         0.00
                                                                  0.02
                                             0.09
                                                    0.16
                                                           0.05
                                      0.01
                               0.96
                          Tr
                 0.00
         0.01
 10
                                                                            Tr
                                                                  0.00
                                                           0.00
                                                    0.00
                                      0.13
                                             0.25
                               0.17
                        0.00
                 0.00
          0.01
                                                                         0.00
 11
                                                                  0.02
                                                           0.00
                                                    0.00
                                             0.01
                                 Tr
                                      0.15
                        0.00
                 0.34
          0.00
 12
                                                                  0.28
                                                                          0.00
                                             0.02
                                                    0.45
                                                           0.63
                                      0.00
                        0.00
                               0.14
                 0.00
          0.86
                                                                         0.00
 13
                                                                  0.20
                                                           0.60
                                                    0.94
                                             0.02
                               0.00
                                      0.00
                        0.00
                   Tr
          0.00
                                                                          0.00
 14
                                                      Tr
                                                           0.00
                                                                  0.01
                                             0.00
                               0.02
                                      0.00
                        0.00
                 0.23
          0.00
 15
                                                                  0.00
                                                                          0.00
                                             0.00
                                                    0.04
                                                            0.00
                                      0.00
                               0.52
                        0.26
                 0.00
          0.00
                                                                          0.00
 16
                                                            0.00
                                                                   0.40
                                                    0.00
                                             0.09
                                      0.93
                        0.00
                               0.73
                 0.38
          0.11
 17
                                                                          0.00
                                                                   1.46
                                                    0.00
                                                            0.00
                                      0.00
                                              0.16
                               0.00
                 0.03
                        0.00
          0.01
                                                                          0.00
 18
                                                                   0.15
                                                     0.14
                                                            0.02
                               0.00
                                       0.00
                                                Tr
                        0.00
          0.00
                 0.00
                                                                          3.36
 19
                                                                   0.00
                                      0.00
                                                            0.00
                                              0.76
                                                     0.22
                        0.48
                               0.00
                 0.00
          0.90
                                                                          0.27
 20
                                                                   0.00
                                                            0.00
                                              0.36
                                                     0.00
                               0.02
                                       0.00
                        0.00
                 0.00
          0.00
 21
                                                                          0.12
                                                            0.00
                                                                   0.00
                                                     0.00
                                              0.00
                               0.00
                                       0.14
                        0.00
                 0.90
             Tr
                                                                   0.36
                                                                          0.22
 22
                                                            0.00
                                              0.01
                                                     0.00
                                       0.00
                        0.00
                               0.00
                 0.20
          0,00
 23
                                                                   0.00
                                                                          0.36
                                                            0.07
                                              0.00
                                                     0.20
                                       0.02
                                0.12
                         0.00
             TI
                 0.50
                                                                          0.00
 24
                                                            0.10
                                                                   0.19
                                                     0.00
                                       0.00
                                              0.10
                 0.80
                         0.00
                                0.00
 25
           0.48
                                                                          0.00
                                                                   0.00
                                                            0.00
                                              0.00
                                                     0.00
                                0.00
                                       0.00
                         0.01
           0.00
                  0.00
 26
                                                                   0.00
                                                                          0.00
                                              0.00
                                                     0.10
                                                            0.00
                         0.00
                                         Tr
                                0.07
           0.00
                  0.00
                                                                          0.00
 27
                                                                   0.00
                                              0.01
                                                     0.00
                                                            0.34
                                       0.00
                                0.00
                         0.00
                  0.04
           1.10
                                                                   0.27
                                                                          0.23
 28
                                                     0.02
                                                            0.10
                                       0.00
                                              0.00
                                0.00
                         0.00
                  0.02
           0.00
                                                                          0.00
 29
                                                                   0.02
                                                            0.00
                                                     0.00
                                              0.00
                                       0.06
                         0.00
                                1.69
           0.22
 30
                                                                          0.13
                                                            0.00
                                                     0.00
                                       0.31
                         0.00
           0.01
  31
                                                                          7.50
                                                                                  0.00
                                                                                         0.00
                                                                   7.94
                                                             3.71
                                       2.97
                                              2.29
                                                     3.61
                                6.31
                         2.73
           5.47
                  4.13
                                                                          3.52
                                                                                         4.38
  TOTAL
                                                                    3.47
                                                            3.31
                                                     2.85
                                              3.14
                                4.15
                                       3.68
                         4.14
                  3.63
           3.83
  NORMAL
```

This report was prepared by the Northeast Regional Climate Center.

+ Normal Nov/Dec values -> 1996 Precip = 55.75"

^{---- =} missing data

Tr = a trace

A = accumulation over one or more previous days

S = value is included in a subsequent value

Observation time - 8am

7
7
2
Ξ
<
\supset
EQ
Ш
S
5.
دځ
RCY'S I
7
ã
Ξ
≒
\leq
.<
Н
<
$\boldsymbol{\Box}$
ب
_
7
W
-
ITH
_
3
-
ź
õ
Ĕ
Ę
=
7
٦
ALCUL
$\ddot{\circ}$
GEC
3
9
×
3
SEEP
S

cfs per section	0.042689 -0.92231 0.476894	1.568805	0.029883	1.582272	0.029883	0.248016	-0.06406		0.021345	-0.05694	0.525179		0.025252	-42:	
Hydraulic Conductivity (0.000012 0.000012 0.000012	0.000012	0.000012	0.000012	0.000012	0.000012	0.000012	0.000012	0.000012	0.000012	0.000012	0.000012	0.000012	0.000012	
slope (ft/ft) ncg #= (0.0012	0.0450	0.0009	0.0454	60000	0.0071	-0.0018	0.0180	0.0006	-0.0016	0.0151	-0.0005	0.0007	2 2 2	<u>-</u>
Distance between IS and OS well (ft)	81.7 45.0 49.0	51.8				-					·•·				_
Difference between off-shore gw level and lake level (ft). Neg#= out-seepage.	-0.25 0.01 0.73	0.21	-0.03	0.10	200	0.10	0.14	0.10	-0.06	0.00	0.14	0.02	10.0-	0.03	· ·
ifference between on-shore/ f-shore wells (ft). Neg #= it-seepage.	0.10	2,33	0.07	-0.15 2.35			•	0.93		61.0		•		-0.04 -0.04	
S EQUATIO	13 4.68 18 3.79			58 3.78 73 8.83				7.75 7.85		7.70 4.40				4.18 4.23	8.24 8.28
SEEPAGE CALCULATIONS WITH WELL DATA AND DARCY'S EQUATION Unadjusted Measurements (ft) On-shore to Off-shore		3.34 4.01 4.82 7.15		3.83 3.68 6.38 8.73		5.30 5.17 4.01 4.33		6.82 7.7	5.18 5.2						dry 8.
VELL DATA , ents (ft) Off-shore to On-s lake groun	0.51	1.10	1,00	1.6		710	1.65	1.90	1.00	2.07	2.00	1.45	2.37	2.05	2.33
ULATIONS WITH WELL DA Unadjusted Measurements (ft) On-shore to Off-shore to groundwater groundwater lake	0,76 1.45	1.83	1.03	. 1.5	i	9:0	15.1	1.80	90'1	2.07	1.81 1.86	1,43	2.38	2.00	2.29
CULATIO	4.83	3.34	5.13	3.83		5.10	3.78	6.82	5.18	4.21	3.87 7.03	5 64	4.68	4.22	đry
GE CALO	northeast northwest	southeast	northeast	southeast			southeast	southwest	northeast	northwest	southeast	northeast		southeast	southwest
SEEPA	17-Apr		14-May			29-May			10-Јин			27. lun			

S	
Ξ	
\geq	
S	
S	
Š	
₹	
≘	
Z	
ĭ	
⋛	
ב	
Œ	
<u> </u>	
Ε	
⋛	
Š	
≌	
₹	
5	
CALCULATIONS WITH	
ÿ	
S	
SPA	
SEEPA(
<u> </u>	
7	
5	,
S	
×	
è	
E	
V	
7	
<u>, </u>	
N	
H	
1	
S	2
\subseteq)
AT	
=	Ì
	ׅׅׅׅׅ֡֝֝֝֜֜֝֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜
٧)
Į.	
-	
(1	
S.	

			1 40	5	On there to Of	ore to Off-shore to Off-sh	ff-shore to	2 10 100	ow level and lake level (ft)	Distance between		
		On-shore to	TIL-CHOTP IN					On-shore to Off-shore to Off-shore to loff-shore wells (It). Neg #=	THE POLICE OF THE PARTY OF THE		neg #	Conductivity cfs per
Date V	Well Pair	groundwater	groundwater groundwater		groundwater groundwater	undwater	lake	out-seepage.	Neg#= out-seepage.	IS and OS well (ft)	out-seepage	5
1	northeast	5 63	0.45	1	5.63	4.62	S	-1.01	0.00		-0.0124	
	TOT DISCUSS	87.	2 43	2.45	465	4.76	4 78	0.11	0.02		0.0024	0.000012 0.085256
- (HOLLI WEST	6.5	205		4 20	4.73	4.28	0.03	0.05		9000'0	0.000012 0.021353
'n	Southeast	7	2.4	, i,	- T	30.0	0 24	Ź	600		£	0.000012 #VALUE
s	southwest	φ	2.3	677	d d	6.23	7.0					
1.1 04	4000	Ç	1 48	95 1	5.70	5.65	5.73	-0.05	0.08		-0.0006	
	IOI III CASI		7.48	7.5	4.90	4.81	4.83	60'0-	0.02		-0.0020	
-	northwest	,	2.40) r	4.40	4 28	4 34	-0.12	90:0		-0.0024	0.000012 -0.08541
-	southeast	4.	7.7	7.10	È.	9 6		: £	800	•	S	0.000012 #VALUE
vi	southwest	dry	2.36	2.44	dry	6,31	6.39		20.5		•	
	1	73	-	<u> </u>	9	267	2.67	0.07	0.00		0.0009	
8-Aug n	norineasi	0.0	2 9		4.80	4 87	483	0.02	0.00		0.0004	0.000012 0.015501
-	northwest	80	2.49	64.7	00°+	4.02	7 25	50.0	0.10		0.0010	0.000012 -0.03559
	southeast	4.28	2.05	7.1.7	4.20	4,43	000	G.	3000		Ē	0.000012 #VALUE
o,	southwest	dry	2.37	2.43	dry	8.32	8.58	Q.	0.00		<u></u>	
73 4.10	northoge	185	797	1.65	5.81	5.81	5.82	0.00	0.01		0.0000	
•	northwest	5.07	2.63	2.66	5.07	4.96	4.99	-0.11	0.03		-0.0024	
. •	contheast	4.5	2.25	2.33	4.50	4.43	4.51	-0.07	80:0		-0.0014	
. •,	southwest	ş	2.54	5.6	dry	8.49	8.55	QN	90:0		<u>2</u>	0.000012 #VALUE
	,	;		i	05 5	08 3	2 8 8	ህ ህ	800		0.0037	0.000012 0.128068
Sep 1	northeast	2.5	1.63	1.71	5	8 6	60.7	31.0	600		0.0033	0.000012 0.116258
-	northwest	4.81	2.63	2.65	18.4	96	4.98	2.5	20.02		AC00.0	
	southeast	4.26	2.2	2.32	4.26	4.38	4.50	0.12	0.12		1700.0	4
	southwest	dry	2.5	5.6	đry	8.45	8.55	Q.	0.10		<u>-</u>	
	,											0.000012
Sep	northeast		•									0,000012
	northwest		-	NOT SAMPLED	•						,	0.000012
	southeast											0.000012
	southwest											100000
	•	3		0.70	7 65	4 87	4 95	0.22	0.08		0.0027	0.000012 0.093917
28-Oct	northeast	4.65) i	0.78	3.34	4 04	4.04	9 70	00'0		0.0156	0.000012 0.542536
	northwest	3.34	T.:	-	156	3.34	3 58	-0-2	0.24		-0.0045	0.000012 -0.15659
	southeast	3.56	9 ;	<u>+ </u>	23.0	7.40	7.60	2.10	0.20		0.0405	0.000012 1.413945
	southwest	5.5	C4.1	1.05	00.0	01.	22.					

NOTES:	 			fucero
Internal P&N	land Fa	timates		
THIERNAL I TO	-	1111(41-		
2 2 2 1 T 1 CC	40.10		1	
By Surface - Bottom Different	73U TA/	DN	and the second second second second second	, ,
TP DP Mean Surface 0,036 0,023	0.90		12 or g/m³	
			le or g/m³	
Mean Bottom 0.053 0.033 Difference 0.017 0.010		0.07 mg/	e or g/m³	
Applied over area >18/leep	(primary rele	ase area from	anoxic sedime	(June)
$= 767.000 \mathrm{m}^2$ in $1 \mathrm{m} \mathrm{V}$	ertical incre	ments over	- 1 m brotile	with
additive /7 decrease in	concentra	tion in ead	, successive	increment
and a flushing factor	0+ 0.65	and the second s	المراجع فراد فمقد المستلكات	(kg/yr)
- 5- V (1) 6- T-10	. <u></u> .	Conc. (g/m³) PDPTND		TN DN
Depth (m) Calculation 7,5-6,5 767,000 m3 x 0.65 + 1000 g				49.9 34.9
	6/7			42.7 29.9
6,5-5,5 5,5-4,5	5/7			35.6 24.9
4,5-3,5	4/7		4.8 2.8	28.5 19.9
3,5-2,5	3/7		3.6 2.1	21.4 15.0
2,5-1,5	2/7			14,2 10.0
1.5-0.5	1/7			7.1 5.0
		707	1 33.9 19.9	177.7 139. 6
and the second s			e de la companya del la companya de	and the second s
By Accumulation over Time	S /= = + ord		ut-Class and as	osteet
June - Sept is period or	t least ext	ETHREM MPUT 4.8	4151040 332 -311	
likely release from	TN DN	ega i i i ann a she e an an earl an air e an	And the second s	and an array of the second second second second second
And the second s	0,8 0,22	All as m	gle or g/m3 for	surface
	11.0 8.0	samples	- De botta	in oss umed
Late Aug 0-046 0.046 0		to be mi	n/mal for sec	y, rejease
Early Sept 0.053 No Data 1	.4 0,19	Some of	er Inputs ex	15T, but
Mean A 0.028 0.029 0	.35 0	partly off	set by diffusion	n in whole pond
				Seal on Cila
Applied over area > 18 dee	p_in_lm_ln	icrements s	t un flushing	vate factor
with additive /7 decrease	tor each in	centration (9	(m³) Load	(Ka/vr)
Depth (m) Colculation	$\tau \rho$	DP TN	DN TP DI	P TN DN
0- 767,000 m3 = 1000 g/kg	× 7/4 × 0.028	0.029 0.35	0 21,5 22,	2 0
1-2	6/2		18,4 19,	1 0
2-3	5/7		15,3 15.	9 0
3-4	4/2		12.3 12.	
4-5	3/2		9.2 9.	
5-6	² / ₂		6.1 6. 3.1-3,	y 0 2 0
6-7	<u> </u>		85.9 89	
Note: DN would be initial.	recycle aredu	et but no see	umplation obs	erved
I Note: IN Would be initial				

Water Volume Spreadsheet

in of a 2	Dianimetered Area	Area	Avg. Area	Incremental	Cumulative
COINCUI	(in^2)	(sq. ft.)	(sq. ft.)	Volume (cu. ft.) Volume (cu. ft.)	Volume (cu. ft.)
(leet below water level)	()	12,000,			
24.0	0.574	1092175			
270	2.33	4433394	2762785	8288354	8288354
0.12	73.7	8257911		19036957	27325312
0.0	F 0	0580830		26771613	54096925
15.0	5.04	400000		2040406	94578890
12.0	5.64	10731478	10160655	30461903	0401040
) c	9	12558113	11644795	34934386	119513276
5.6) (15602504	14080308	42240925	161754201
0.9	7.0	10070001		F0002374	212557475
3.0	9.6	18266346	16934425	#/7c0o0c	21200717
	11 15	21215600	19740973	59222918	271780393
0.5	2				

Total Water Volume= 271,780,393

cu. ff.

DESCRIPTION Rate of water yield in CFS/Sq.Mi. by watershed increases with increased runoff Annual rainfall in M. Increases with wet year Portion of rainfall converted to overland flow increases with steeper slope and lowered permeability Portion of rainfall converted to baseflow increases with steeper slope and powered permeability Portion of rainfall converted to baseflow increases with flatter slope and higher permeability for continual converted to baseflow increases with flatter slope and higher permeability increases with flatter slope and higher permeability flowed in the slope and higher permeability increases with flatter slope and higher permeability increases with residential (0.3-0.3 ac lots) + highway corridors industrial part, institutional, Recreational or Cemetery Agricultural with cover crops (minimal bare soil) Agricultural with cover upland soils and vegetation (and with tree canopy over upland soils and vegetation (ppen wetland on lake area (no substantial canopy)	ုပ္ကို ဝု က	UTHERN NE A	AREA	.—	_				-		+	!
PRESCRIPTION Rate of water yield in CFS/Sq Mi. by watershed 2.0	0 8	1	Š		1 1					-	-	
Rate of water yield in CFS/Sq Mi by watershed Increases with increased runoff Annual rainfall in M Increases with increased runoff Increases with wet year Portion of rainfall converted to overland flow Increases with steeper slope and lowered permeability Increases with steeper slope and lowered permeability Increases with fatter slope and higher slope welland or lake area (no substantial canopy) Increases with fatter slope welland or lake area (no substantial canopy) Increases with recearch welland welland or lake area (no substantial canopy) Increases with increases with welland or lake area (no substantial canopy) Increases with recearch welland welland or lake area (no substantial canopy) Increases with increases with welland or lake area (no substantial canopy) Increases with increases with welland or lake area (no substantial canopy)	2.0		Š		- -	-						: :
Increases with increased runoff Annual rainfall in M Increases with wet year Portion of rainfall converted to overland flow Increases with seleper stope and lowered permeability Portion of rainfall converted to baseflow Increases with fatter stope and higher permeability Portion of rainfall converted to baseflow Increases with fatter stope and higher permeability Portion of rainfall converted to baseflow Increases with fatter stope and higher permeability Portion of rainfall converted to baseflow Increases with fatter stope and higher permeability Portion of rainfall converted to baseflow I with density residential (2.1 ac lots) Medium density residential (2.2 ac lots) + highway corridors Park institutional Recreational or Cemetery Agricultural with cover crops (minimal bare soil) Agricultural with cover crops (some bare soil) Agricultural with row crops (some bare soil) Agricultural with receanney over upland soils and vegetation Land with tree canney over upland soils and vegetation Land with tree canney over welland soils and vegetation Land with tree canney over welland soils and vegetation Land with tree canney over welland soils and vegetation Cand with tree canney over welland soils and vegetation Cand with tree canney over welland soils and vegetation Cand with tree canney over welland soils and vegetation Cand with tree canney over welland soils and vegetation Cand with tree canney over welland soils and vegetation Cand with tree canney over welland soils and vegetation Cand with tree canney over welland soils and vegetation Cand with tree canney over welland soils and vegetation Cand with tree canney over welland soils and vegetation Cand with tree canney over welland soils and vegetation Cand with tree canney over welland soils and vegetation Cand with tree canney over welland soils and vegetation Cand with tree canney over welland soils and vegetation	1.53	1.7	1.5									
Annual raintal in M Increases with very year Portion of rainfall converted to overland flow Increases with steeper slope and lowered permeability Portion of rainfall converted to baseflow Increases with steeper slope and lowered permeability Portion of rainfall converted to baseflow Increases with flatter slope and higher permeability Photomore and provide and pigher permeability Increases with flatter slope and higher permeability Increases with residential (*1 ac lots) Industrial Industrial Institutional Recreational or Cernetery Industrial with row crops (some bare soil) Increases with row crops (some bare soil) Industrial with rece canopy over wetland soils and vegetation Industrial pasture with livestock Industrial pasture with	1	1.14	0.81	+	+	<u> </u>	-					
Defficient Increases with way year in the control of ainfall converted to overland flow increases with steeper slope and lowered permeability of increases with steeper slope and higher permeability increases with faiter slope increases increases with faiter slope increases increases with faiter slope increases with faiter slope increases increases with faiter slope increases with faiter slope increases with faiter slope		-		:	<u>. </u>					1	- !	
Increases with steeper stope and lowered permeability Portion of rainfall converted to baseflow Increases with flatter stope and higher permeability Portion of rainfall converted to baseflow Increases with flatter stope and higher permeability DRT COEFFICIENTS FOR RUNOFF Low density residential (*1 ac lots) MAXIMI Low density residential (*3.0.9 ac lots) + highway corridors Medium density residential (*3.0.9 ac lots) + commercial Industrial Park, Institutional, Recreational or Cemetery Agricultural with row crops (minimal bare soll) Agricultural with row crops (minimal bare soll) Agricultural with row crops (some bare soll) Agricultural with rece canopy over upland soils and vegetation Land with tree canopy over wetland soils and vegetation Land with tree canopy over wetland soils and vegetation Concentrated liveslock Land with tree canopy over wetland soils and vegetation Concentrated liveslock area (no substantial canopy) Open wetland or lake area (no substantial canopy)		0.40	0.10			:					-	1
Ponton of rainfall converted to baselow increases with fatter slope and higher permeability DRT COEFFICIENTS FOR RUNOFF Low density residential (>1 ac lots) MAXIM Low density residential (>2.0 ac lots) + highway corridors MAXIM Low density residential (0.3.0 ac lots) + highway corridors High density residential (0.3.0 ac lots) + highway corridors High density residential (0.3.0 ac lots) + highway corridors High density residential (0.3.0 ac lots) + highway corridors Agricultural avith rower crops (minimal bare soll) Agricultural with row crops (some bare soll) Agricultural avith row crops (some bare soll) Agricultural avith row crops (minimal bare soll) Agricultural avith row crops (some bare soll) Agricultural diversiock holding area Land with tree canopy over upland soils and vegetation Cand with tree canopy over upland soils and vegetation Open wetland or lake area (no substantial canopy) Open meadow area (no clearly wetland, but no canopy)	0.40	0.20	0.01		:	:				1 :		:
1 ac lots) Additional or Cemetery Agricultural or Cemetery Sisteme bare soil) As (some bare soil) As (some bare soil) As (some bare soil) A (seasock) A (some bare soil) A (some				. !								
1 ac fols) al (0.3-0.9 ac lots) + highway corridors al (0.3-0.9 ac lots) + commercial al (0.3-0.9 ac lots) + commercial ational or Cemetery ps (minimal bare soil) s (some bare soil) s (some bare soil) treestock functional area functional area functional area functional area functional area functional area functional canopy) dearly wetland, but no canopy)												
MAXXIMA MAXIMA MAXIMA MAXIMA MAXIMA MAXIMA Medium density residential (0.3-0.9 ac lots) + highway corridors MAXIMA Medium density residential (0.3-0.9 ac lots) + highway corridors High density residential (0.3-0.9 ac lots) + highway corridors High density residential (0.3-0.9 ac lots) + commercial high density residential (0.3-0.9 ac lots) + highway corridors High density residential (0.3-0.9 ac lots) + highway corridors 6 Maxima Maxim		HORUS EXPORT	RT (KG/HAYR)	- -	NITRO	NITROGEN EXPORT (KG/H.		€	Ы.		EXPORT (KC	(KG/HA/YR)
(LDR) Low density residential (>1 ac lots) 6	AXIMUM	MEAN	Š	3	MUMIX	MEAN	MEDIAN	MOM	- 1	MEAN	_	MINIMOM
(LDR) Low density residential (7.3 d. 10x3) Medium density residential (0.3 d. 0 ac lots) + highway contdors (1.0 km) Medium density residential (0.3 d. 0 ac lots) + highway contdors (1.0 km) Medium density residential (0.3 d. 0 tols) + commercial (1.0 km) Medium density residential (0.3 d. 0 tols) + commercial (1.0 km) Medium density residential (0.3 d. 0 tols) + commercial (1.0 km) Medium density residential (0.3 d. 0 tols) + commercial (6 73	Ė		19	38.47	9.97	5.50	1.48	250	11	8	7
MADRAHWY Medium density residential (a. D. Sac lots) + commercial (b. High density residential (a. D. Sac lots) + commercial (b. High density residential (a. D. Sac lots) + commercial (b. High density residential (a. D. Sac lots) + commercial (b. High density residential (a. D. Sac lots) + commercial (b. Park, Institutional, Recreational or Cemetery (b. Agricultural with cover crops (minimal bare soil) (a. Agricultural with row crops (some bare soil) (b. Agricultural with row crops (some bare soil) (a. Comcentrated livestock (b. Comcentrated livestock holding area (b. Comcentrated livestock holding area (b. Land with tree camopy over welland soils and vegetation (a. Land with tree camopy over welland soils and vegetation (b. Land with tree camopy over welland soils and veg	6.23	1.61	10		38.47	9.97	5.50	1.48	22	77	8	*
HDR/Com High density residential (10.5 octob) High density residential (10.5 octob) High density residential (10.5 octob) Park, Institutional, Recreational or Cemetery Agricultural with row crops (ninimal bare soil) Agricultural with row crops (some bare soil) High Agricultural with row crops (some bare soil) High Agricultural with row crops (some bare soil) High Agricultural with restock Agricultural with recampy over will and vegetation Concentrated livestock holding area Park High Agricultural with tree canopy over welland soils and vegetation Land with tree canopy over welland soils and vegetation Land with tree canopy over welland soils and vegetation Open welland or lake area (no substantial canopy) (Wetaland), Open meadow area (no clearly welland, but no canopy)	3	191	1.5		38.47	9.97	5.50	1.48	20	77	8	4 :
(Ind.) Industrial Industrial (Ind.) Industrial (Ind.) Park, Institutional, Recreational or Cemetery Park, Institutional, Recreational or Cemetery Park, Institutional, Recreational pare soil) Agricultural with rower crops (some bare soil) Agricultural with row crops (some bare soil) Agricultural with row crops (some bare soil) (Row Crop) Agricultural with row with livestock Agricultural pasture with livestock Agricultural pasture with livestock Agricultural pasture with livestock Agricultural pasture with research Concentrated livestock holding area 795 Concentrated livestock holding area 795 (Inchand) Land with tree canopy over wetland soils and vegetation Open wetland or take area (no substantial canopy) Open wetland or take area (no clearly wetland, but no canopy) Open meadow area (no clearly wetland, but no canopy) Open meadow area (no clearly wetland, but no canopy) Open meadow area (no clearly wetland, but no canopy) Open meadow area (no clearly wetland, but no canopy) Open meadow area (no clearly wetland, but no canopy) Open meadow area (no clearly wetland, but no canopy) Open meadow area (no clearly wetland, but no canopy) Open meadow area (no clearly wetland, but no canopy) Open meadow area (no clearly wetland, but no canopy) Open meadow area (no clearly wetland, but no canopy) Open wetland or lake area (no clearly wetland, but no canopy) Open wetland or lake area (no clearly wetland, but no canopy) Open wetland or lake area (no clearly wetland, but no canopy) Open wetland or lake area (no clearly wetland, but no canopy) Open wetland or lake area (no clearly wetland, but no canopy) Open wetland or lake area (no clearly wetland, but no canopy) Open wetland or lake area (no clearly wetland, but no canopy) Open wetland or lake area (no clearly wetland, but no canopy) Open wetland or lake area (no clearly wetland, but no canopy) Open wetland or lake area (no clearly wetland, but no canopy) Open wetland or lake area	3 2	16.	5		38.47	9.97	2.50	1.48	250	11	g	7
Agricultural with cover crops (minimal bare soil) 2 Agricultural with row crops (some bare soil) 18 Agricultural with row crops (some bare soil) 4 4 Agricultural pasture with livestock (Grazing) Agricultural pasture with livestock (Grazing) Concentrated livestock holding area (Feedol) Land with tree canopy over upland soils and vegetation 2 (Wetland) Land with tree canopy over wetland soils and vegetation Concentrated livestock holding area (no substantial canopy) (Wetland) Open wetland or lake area (no substantial canopy) Open meadow area (no clearly wetland, but no canopy) (Meadow) Open meadow area (no clearly wetland, but no canopy) Open meadow area (no clearly wetland, but	ន	1.91	1.10	0.19	38.47	26.6	5.50	1.48	520	12. 5	6 8	4.5
Row Crop) Agricultural with row crops (some bare soil) 18 4	8	1.08	0.80		7.82	5,19	8 6	2010	000	3 5	315	:
Agricultural pasture with livestock Concentrated livestock holding area Concentrated livestock holding area Land with free canopy over upland soils and vegetation Land with free canopy over wetland soils and vegetation Copen wetland or lake area (no substantial canopy) At ake) Open meadow area (no clearly wetland, but no canopy)	8	4.46	225		00.00	2 0	9 5	7 7	200	8	18	
Concentrated livestock holding area Land with free canopy over upland soils and vegetation Land with free canopy over wetland soils and vegetation Canopier wetland or lake area (no substantial canopy) Den wetland or lake area (no substantial canopy) Open meadow area (no clearly wetland, but no canopy)	8 8	1.50	224.00		06 6262	3110.70	2923.20	680.50	40000	15000	15000	3500
Land with free canopy over upland soils and vegetation Land with free canopy over wetland soils and vegetation Open wetland or take area (no substantial canopy) Open meadow area (no clearly wetland, but no canopy)	318	200	02.0	3	6.26	2.86	2.46	1.38	6	15	9	4
Land with free canopy over wetland solis and vegetation of open wetland or take area (no substantial canopy) Open meadow area (no clearly wetland, but no canopy)	3 8	1 20	318		6.26	2.86	2.46	1.38	9	15	9	4
Open wetland of take area (no substantial caropy) Open meadow area (no clearly wetland, but no caropy) O	300	270	200		6.26	2.86	2.46	1.38	\$	15	9	4
Open meadow area (no clearly wetland, but no camply)	0 0	0.24	0.20		6.26	2.86	2.46	1.38	\$	15	9	4
last the state of	4 90	. 25	0.80		30.85	8.65	5.19	1.48	10000	1000	000	€
(Barren) Mining or constitution areas, (arget) that constitution of	0.83	0.24	0.20		6.26	2.86	2.46	1.38	40	15	9	4
Define:	6.23	6	1.0	0.19	38.47	9.97	5.50	1.48	250	77	8	4
Other 2 Deline: 18.60	18.60	4 46	2.20	0.26	79.60	16.09	9.00	2.10	2000	200	220	2

	way corridors al al alion etation nnopy)	AXIMUM 0.050 0.050 0.050 0.050 0.050 0.050 0.050	MEAN N	z	MINIMUM	NAA XINGI INA	MEAN		MINIMOM	MAXIMUM	뜋	MEDIAN	
V.RCES ALRON Rition Rit	al lation etation nnopy)		6	- ;	•			-					
WRCES than a sa s	al tatio	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.010			- 00	-	ē		-	03	_	0.1
ke) WRCES ition	way latio	0.050 0.050 0.050 0.050 0.050 0.050		0.010	0.001	20.02	3	200	3	2			
V.RCES Rural Area Rural Area	inop inop	0.050 0.050 0.050 0.050 0.050 0.050	5.5	0.010	0.001	40.00	10.00	000	31	5	21	۰ j	- : • - : • - : •
mn) p) p) lt.ake) lt.ake) lt.ake) sources sources aurural Area	8,8,8,0	0.050	010	0.010	000	80 00	20.00	20.00	4.00	1.0	0.3	0 !	5
() () () () () () () () () () () () () (8,8,8,	0.050	0 0		0000	00.00	5.00	28	188	0	0.3	0	0.1
p) p) l) llake) l) SOURCES position Area	8, 8, 8, 8	0.050	2	2 1	3 3	2 6	18	2	18	C	0	:0 !	0.0
p) (d) (d) (d) (d) (d) (e) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	1 8 8 8 8 8 V	0.050	0.010	500	3	20.00	3	318	200		10		
(p) (l) (l) (l) (l) (l) (l) (l) (l) (l) (l	8 8 8 8	0.050	0.010	0.010	0.001	10.00	2.50	2 20	0.0	21	311	1	î
p) (1) (2) (3) (4) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	ps straight are son, livestock livestock livestock woulding area wer upland soils and vegetation ver wetland soils and vegetation ea (no substantial canopy) clearly wetland, but no canopy) areas, largely bare soils	0.050	0.010	0.010	0.00	10.00	2.50	2.50	0.50	0.	0.3)	
SOURCES Source auffuret Area	hoding area wer upland soils and vegetation wer wetland soils and vegetation rea (no substantial canopy) reas (a substantial canopy) reas, largely bare soils	0000	0,0	0.010	0.001	20.00	5.00	8	1.00	_	0.3	0	0
) () () () () () () () () () () () () ()	noding area wer upland soils and vegetation wer wettand soils and vegetation rea (no substantial canopy) clearly wetland, but no canopy) ireas, largely bare soils		210	2 10		000	25.00	25.00	500	_	0.3	0	0.1
SOURCES Sources Area auRural Area	wer upland soils and vegetation wer wetland soils and vegetation ea (no substantial canopy) clearly wetland, but no canopy) neas, largely bare soils	001.0	0.030	0.030	0.00	3	310	3 15	90.0	-	c		0
(Uppland) (Wetland) (Wetland) (Wetland) (Meadow) (Barren) (Barren) (Barren) (RAREAL SOURCES) heric Deposition Forested Area	ver wetland soils and vegetation rea (no substantial canopy) clearly wetland, but no canopy) reas, largely bare soils	0.010	0.004	0.004	0.001	1.00	00.	2	0.00		3 (6	!	i .
(Wetland) (WetlandTake) (Meadow) (Barren) (Barren) (AREAL SOURCES) heric Deposition Forested Area	wer wetland souls and vegetation rea (to substantial canopy) clearly wetland, but no canopy) ireas, largely bare soils	0.010	0.00	0 004	0.001	8.	0.50	0.50	0.05	-	0.3	.	- -
(Wetlandflake) (Meadow) (Barren) (Barren) (RAREAL SOURCES) heric Deposition Forested Area			18	7000	0.001	100	0.50	0.50	0.05	1.0	0.3		Ö
(Meadow) (Barren) (Barren) (Barren) (BAREAL SOURCES heric Deposition Forested Area Agricultural/Rural Area		2 1	5 10				2 2	05 0	0.05		0.3		0.1
(Barren) (Barren) (AREAL SOURCES heric Deposition Forested Area	neas, largely bare soils	0.010	0.00	3	1000	316	3 (5	3	9		5	!	0
(Barren) AREAL SOURCES There Deposition Forested Area Agricultural/Rural Area		0.010	0.004	0.004	0.001	9.	0.0	2	200		2 0		
R AREAL SOURCES Theric Deposition Forested Area Agricultural/Rural Area		0.010	0000	000	0.001	1.00	0.50	0.50	0.05		2) C	- : - :
g			0	000	100	20.00	5.00	5.00	8	1.0	0.3	0	0
g		00.0	210	2 (3		000	00 00	8.8	10	03		0
g		0.050	0.010	0.010	D.00	80.00	20.00	3	3	21	2	1	1
g						:		:	•	-			:
g			- 2	OV PRODEST OF TOTAL	10/4/0	NECORTIN	EXP	ORT (KG/HA	AMRI	SUSPENDED	ED SOLIDS	EXPORT	(KG/HA/YR)
g		THOSE	KUS EX	25	2	2	<u>.</u>				LANDES .	MAICHA	RAININA IN
· · ·	×	AXIMUM	MEAN	MEDIAN	MINIMOM	MAXIMUM	MEAN	MEDIAN			2		!
Area	from parial courage	-							1				-
	Itolii adilai sonicos	720	0.27	0.00	0.07	1.30	5.96	6.52	0.99		9	32	Δ.
	n largely forested area	5 !	2 : 0	1	5	500	20.08	13 13	10.49	_	105	8	52
i	n largely agricultural area	0.97	5		0.12	3	2 1 1	- 10	10	125	8	107	37
	Deposition origination in largely urban area	3.67	1.27	8	0.26	24.80	LC SL	2 .	2 1 1 1 1 1 1 1 1 1];	318		-
Usuidi Aida	e or macrophyles oxic of anoxic	10.00	8	1.00	0.10	10.00	1.00	8	0	10.	3	3	2 : 5 !
Internal Loading	Solution of the second	1		 									
(assumes anoxia for 30 days - adjust as incoded	days - adjust as medical			1	<u> </u>								
		!!!!!				1							:
The second secon		<u>.</u>	HOSPHORUS LOAD	USLOAD		.	NITROG	NITROGEN LOAD			ED SOLIDS	_	
			LAC AND	74100	RAININAL ING	MAXIMIM	MFAN	MEDIAN	MINIMOM	MAXIMUM	MEAN	MEDIAN	
NON-AREAL SOURCES	:	AXIMOM				00 4	2!	000	67.0		i	5.0	2.0
(Although Inputs from birds (ka/bird/vr)	s (ka/bird/vr)	0.50	0.20	0.20	3	3.80	3:	26.0	ŕ				
	South Control of the	-				1		:	-				
Point Sources	4	90.9	4 00	4 00	8	70.00	45.00	45	20.02	100.0	20.0		10.0
Wastewater - puriary requirem (Plan)	deduitin (phun)	00 0	200	200	0.40	10.00	5.00	S	1.0	10.0	5.0	_	1.0
Wastewater - secondary treatment (ppm)	tary treatment (ppm)	3 6	3 1		9	200	200	,	10	1	:	'G	-
Wastewater - tertiary treatment (ppm	reatment (ppm)	3	2	0.30	2 10	318	210	310	200	101	-	90	;
Cooling water (bbm)		2.00	1.00	1.00	0.05	1.00	CO:CO	7	i,c		1	1	

EXPORT MODEL INPUT AND C	AND CALC	ALCULATIONS	NS					
						1		
STD. WATER YIELD (CFS/SQ.MI)	2.0							
PRECIPITATION (in M)	1.14							
			RI INOFF EXPORT COEFFICIENTS	ORT COEF	CIENTS	BASEFLOW EXPORT COEFFICIENTS	XPORT COR	FFICIENTS
COEFFICIENTS	Runoff	Baseflow	P Export	N Export	TSS Export	P Export	N Export	TSS Export
	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient
	(Fraction)	(Fraction)	(ka/ha/vr)	(kg/ha/yr)	(kg/ha/yr)	(kg/ha/yr)	(kg/ha/yr)	(kg/ha/yr)
LAND USE	0.40	0.25	1.00	25.00	50	0.050	10.00	0.2
Urban 1 (LDK)	0.50	0.15		20.00	50	0.050	20.00	0.2
Urbail Z (IVIDIX/nwy)	090	0.05		15.00	50	0.050	30.00	0.2
Urban 3 (HDR/Coll)	0.00	0.05	1	10.00	50	0.050	5.00	0.2
Urban 4 (IIId)	0.40	0.25	1	8.00	50	0.050	5.00	0.2
Olbaria (Cur Crop)	0.15	0.30	1.00	00.9	50	0.050	5.00	0.2
Agric 1 (CVI Clop)	0.25	0.30	2.20	10.00	200	0.050	5.00	0.2
Agric 2 (Now Clob)	0 30	0.30		15.00	75	0.050	10.00	0.2
Agness (Glazing)	0.45	0.30	25	1500.00	4000	0.100	50.00	0.2
Forest 1 (Triand)	0.23	1	0.24	5.00	15	0.010	0.70	0.2
Corost 2 (Metland)	0.05	-		5.00		0.010	0.70	0.2
Open 1 (Metland/l ake)	0.05	0.40	0.24	5.00	10	0.010	0.70	0.2
Open 2 (Meadow)	0.15				15	0.010	0.70	0.5
Open 2 (meacon)	0.40		1.50		200	0.010	0.70	0.2
Other 4	0.10	0.40		2.46	16		0.70	
Office	0.35	0.25	1.10	5.50	93	0.050	5.00	0.2
Outer 2	090	. 0.05	2.20	00.6	250	0.050	5.00	0.2
Other 3								

	Affected	P Export	N Export	TSS Export				5			
	Lake	Coefficient	Coefficient	Coefficient							
Atmospheric Deposition	1 R	(kg/ha/yr)	(kg/ha/yr)	(kg/ha/yr)			-				
from Forested Area	197 1	0.20	13.13	32.0	1				:		
from Urban/Industrial Area	0	1.00	21.36	107.0							:
Internal Loading	7.97	0.75	8.20	0.1		. !					
NON-AREAL SOURCES											
	Number of				TSS Load	P Load	N Load	TSS Load			
	Source Units	(cn.m/yr)	(kg/unit/yr)	(kg/unit/yr)	(kg/unit/yr)	(wdd)	(mdd)	(ppun)			!
Waterfowl	65		0.20	0.95	6						
Point Sources		244000				0.01	0.45	1.0			
PS-1		000117									
PS-2			:								
P.O.S.	NO 1=YES							1			
Basin in which Point Source Occurs (BASIN 1	BASIN 2	BASIN 3	BASIN 4	BASIN 5	BASING	BASIN 7	BASIN 8	BASIN 9	BASIN 10	
		i :	-		!	0	0	0	0	•	
P.4-1		:	1	0	0	0		0	0	0	
PS-2	0	0	0			0	0	0	0	0	
		:									
				-							
	1	:	1								
BASIN AREAS						1		:			
				1	200	OVO	DACINI 7	BACINA	6 NIZVE	RASIN 10	TOTAL
	BASIN 1		BASIN 3	BASIN 4		AREA (HA)		AREA (HA)	AREA (HA)	AREA (HA)	AREA (HA)
LAND USE	AREA (HA)	AKE	AREA (HA)	\ \ \ \	ı	<u> </u>					32.17
Urban 1 (LDR)	1.01	727		200		0.06					16 94
Urban 2 (MDR/Hwy)	7000										10.312
Urban 3 (HDR/Com)	0.002	<u>.</u>		;				:			o
Urban 4 (Ind)	6.43	691			2.12	12.44					22.68
Acric 1 (Cvr Crop)											0 10 1
Agric 2 (Row Crop)		0.002			1.99		:		:		11 16
Agric 3 (Grazing)		3.21	3,11		4.84	•	:			!	0 0
Agric 4 (Feedlot)		:	!	1	0 1			-			223 49
Forest 1 (Upland)	28.21	25.19	19.28	98.08	1	:					0
Forest 2 (Wetland)			7.57	24 64	8 06	i					47.54
Open 1 (Wetland/Lake)	76.0	ď) 	!	-	1.36		:			9.08
Open 2 (Meadow)	0.00	6.78	1 . 0.	-	:	!			:		6.781
Open 3 (Excavation)	200	1	;		1	!	:				
Other 2	:	:					. :		:	:	-:
Other 3											>
					26.70	72.40					383.065
TOTAL	38.463	3 80.062	2 32.77								

WATER LOAD GENERATION, RONOLI											
	BASIN 1	BASIN 2	BASIN 3	BASIN 4	BASIN 5	BASIN 6	BASIN 7	BASIN 8	BASIN 9	BASIN 10	TOTAL
AND HOL	(CH M/YR)	1	(CU.MYR)	(CU.M/YR)	(CU.M/YR)	(CU.M/YR)	(CU.MYR)	(CU.M/YR)	(CU.M/YR)	(CU.M/YR)	(CU.M/YR)
	ABORE		2964	2416.8	6156	0	0	0	0	0	146695.2
Urban 1 (LDK)	2005.0	2	42566	7353		342	0	0	0	0	96558
an 2 (MDR/Hwy)	6/07	44110	0000	20.	2007	0 30101				0	70534 08
Jrban 3 (HDR/Com)	13.68	9849.6	25444.8	5	23119.2	12100.0	5 . 6 : :			!	
Libon A (Ind)	-	0	0	0	0	0	0	2	>	-	
Fill 4 (IIII)	203208	770F 4	0	0	9667.2	56726.4	0	0	0	0	103420.8
Itban 5 (P/I/R/C)	0.0202				0	0	0	0	0	0	
ic 1 (Cvr Crop)	۰ ا) - -) 		2 1227						5677.2
ic 2 (Row Crop)	_	5.7	0) : :	0.1700	1					20167
io 3 (Grazina)	0	10978.2	10636.2	0	16552.8	0	o :	>	0		2.10100
(Guazalo) o ol		0	!	0	4719.6	0	0	•	0		4719.
Agric 4 (reediot)	12250 65	24647.25	10153 2	2515752	18185 85	117066.6		0	0	_	573251.85
est 1 (Upland)	(2330.03	i	4.000			•		C	-:-		
Forest 2 (Wetland)	0	0	ָר יוֹ ר								27007 8
Open 1 (Wetland/Lake)	0	0	2069.1	14044.8	4594.2	6389.7	0		- ! °	1	45.60
O (Mandam)	4001 4	9199.8	0	0		2325.6	0	0		1	13320.0
Open z (Meadow)	7.50		0	0	0	0	0				30921.36
Open 3 (Excavation)	r		0	0	0	0		0		_	_
Other 1	0	ין כ									
Other 2	_	0	0) ·							
Other 3	0	0	0	0	0	0)	3		-	
						1					
						:	:				
		ļ		:		104057					1112569.89
TOTA	112983.69	307939.65	104133.3	27,2388.8	11/100.33		_				

Decider 1 Decider 2 Decider 3 Deci	BASIN 3 BASIN 4 (CUMYR) (CUMYR) (CUMYR) 4069.8 2205.	BASIN 5 BASIN 6	DACIN 7 BASIN 8	ONOVO	-
CU M/YR CU M/YR CU M/YR CU M/YR CU M/YR CU M/YR 2878.5	BASIN 3 BAS (CU MYR) (CU. 1852.5 4069.8				RASIN 10 TOTAL
(CU.M/YR) (CU.M/	(CUMYR) (CU 1852.5 1 4069.8 2 2120.4		BASIN / DA		
(CO.WITTY)	1852.5 14069.8 2120.4	(CU.M/YR) (CU.M/YF	(CU.MYR) (CU.N	٦	2
7 878.5 81595.5 1852.5 803.7 13235.4 4069.8 2120.4 7 820.8 2120.4 7 820.8 2120.4 7 8325.5 4816.5 7 8325.5 4816.5 7 128637.6 114866.4 87916.8 8002.8 18399.6 7 8002.8 15458.4 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1852.5 4069.8 2120.4			0	0 91684.5
) 803.7 13235.4 4069.8 1.14 820.8 2120.4 18325.5 4816.5 0 0 6.84 0 0 0 0 0 0 0 0 128637.6 114866.4 87916.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4069.8 2205. 2120.4 0	3847.5	0.00		A 78967 A
1, 1.14 820.8 2120.4 18325.5 4816.5 0 6.84 0 0 10978.2 10636.2 0 0 0 0 12.28 15458.4 0 0 0 0 0 0	2120.4	8550 102.6	0		7022
1)	0	1926.6 1008.9	0 6.	0	1
18325.5 4816.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0 0	0
18325.5 4816.5 0 0 6.84 0 10978.2 10636.2 0 10978.2 10636.2 0 0 0 0 16552.2 8002.8 15458.4 18399.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		NA 100		0	0 64638
0 0 6.84 10636.2 10636	816.5	0:	100		0
0 6.84 10636.2 0 10978.2 10636.2 0 0 0 0 0 16552.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0		0		A812 64
128637.6 114866.4 87916.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 84 0 0	6805.8	0	0	
0 10978.2 10030.2 0 0 0 0 0 16552. 8002.8 18399.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	46552 B	0	0	
0 0 0 0 16552. 8002.8 18399.6 16552. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10030.2	1	2	0	0 3146.4
128637.6 114866.4 87916. 0 0 16552. 8002.8 18399.6 15458.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	3146.4	:		1
(n) 2.28 18399.6 16552. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	87916.	32330.	4	2	,
n) 2.28 18399.6	1	C	0	0	-
8002.8 18399.6 10552. 300.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26753		0 0	0 216782.4
8002.8 18399.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16552.8 112550.	0.00	2.10	0	0 31053.6
n) 2.28 15458.4 0 0 0 0 0 0 0 0 0 0 0 0	0	7			0 15460.68
ource #1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i	0	0 10		<u> </u>
ource #1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0		
ource #1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		. 0	0	0	
ource #1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) 0	0	0		
0 0			0	0	0
0 0			0	0 0	0
0		0			0
The sound of the s	0	0	0		
			2	0	0 1521705.1
TOTAL 158651.52 260177.64 123148.5	123148.5 563319.	6 115955.1 300452	2.7		

	DACIN 1	PASIN 2	RASIN 3	BASIN 4	BASIN 5	BASIN 6	BASIN 7	BASIN 8	BASIN 9	BASIN 10	TOTAL
	NICO O	100000	(KC/VE)	(KG/VR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)
LAND USE	(KG/TR)	(אפלות)	2	200	4.4			0	0	Ģ	32.17
Urban 1 (LDR)	1.01	79.03	000		3	90.0		· c			16.94
Urban 2 (MDR/Hwy)	0.47	7.74	2.38	67.	0 6	318	· c		Ö	0	10.312
Urban 3 (HDR/Com)	0.002	44.	3.72	5 1	ာ :	-	· · ·		C	0	0
Urban 4 (Ind)		0	O I	0	9	' ! ~				0	22.68
ban 5 (P/I/R/C)	6.43	1.69	0	5	2.12	77.7				0	0
Agric 1 (Cvr Crop)	0	0	0	0	0	9	5 (4 3824
April 2 (Bow Crop)	0	0.0044	0	0	4.378	0	0	51.	5.4		2000
IN Z (NOW CIOP)	!	2.568	2,488	0	3,872	0	0	0	0) i	0.920
Agric 5 (Grazing)		0		0	230	0	0	0	0	0	730
Agne 4 (Feedou)	17.	6.0456	4 627	23.5392	1.7016	10.9536	0		0	0	53.6376
Forest 1 (Upland)	5.0) !			!	0	0		0	0	
Forest 2 (Wetland)	- 10		0.0743		1 934	2 6904	0		0	٥١	11.4096
Open 1 (Wetland/Lake)		1	7100		1			0	0	0	9.08
Open 2 (Meadow)	2.34	6							0	0	10.1715
Open 3 (Excavation)	0.0015	10.17) 						0	
Other 1:	0	•	0	0	0	0					
Other D.		0	0	0	•	0	0) 	-		
nel 4:			0	0	0	0	0	0	0		
Other 3:	'! !										
	17	7 65	7 7 7	31.3	253.7	29.3	0.0	0.0	0.0	0.0	409.7
TOTAL	-	3									
			1								
OAD GENERATION: BASEFLOW P											
	ì			-			1	0 400	DACINIO	SASIN 10	TOTAL
	BASIN 1	BASIN 2	BASIN 3	BASIN 4	BASIN	RASINO	S COLOR			(BVC)XI	(KC/YR)
LAND USE	(KG/YR)	Ą.	ž	ž.	볼	(KG/YR)	(E)		2		
ban 1 (LDR)	0.050	_	O.	0.0265	0.06	:			1		
Irhan 2 (MDR/Hwv)	0.023	:	Ō			:					_
Lithan 3 (HOR/Com)	0.0001	0.072	0.186	0	0.16	0.0885					•
the A Cody		:	0			!					-
Colores + Child	0 3215	0.0845	0	1	0.106	0.622) i	5.13
Older S (Tables)		1	0	i	0	-			:		į
gric 1 (Cvr Crop)		0000			0 0.0995			0		1	-
Agric 2 (Row Crop)			0.155	1	0 0.242	0			0	:	
gric 3 (Grazing)		:	1			0			0	-	0.092
Agric 4 (Feedlot)	11	!	0 000	-	00200	0.456			0		2.2349
Forest 1 (Upland)	0.2821	<u>:</u>	5		1						
Forest 2 (Wetland)			1		;	1	1			!	0.4754
Open 1 (Wetland/Lake)			0	0.246	9	1					: !
Open 2 (Meadow)	0.0234	0				0.013					
Open 3 (Excavation)	0.00001	•	:			9					<u> </u>
Other 1:		0	0		0	0		0	5 10	:	
The contract of the contract o	1	0	0			0		0		0	2 0
Other 3:			0		0	0		0	:		
Care S.				:	0	0		0		0	6
Point Source #1			0			0		0	0	0	0
Fourt Source #2	-			0	0	0		0	0	0	
Politi Soulice #5				-							

Urban 1 (LDR) Urban 2 (MDR/Hwy) Urban 3 (HDR/Com) Urban 3 (HDR/Com) Urban 4 (Ind) Urban 5 (PI/RVC) Agric 1 (Cwr Crop) Agric 2 (Row Crop) Agric 3 (Grazing) Agric 3 (Grazing) Forest 1 (Upland)	BASIN 1 (KG/YR)	BASIN 2	BASIN 3	DACIN A	DACIN S	DA PIN B	2 2 2	& NIOVO	O NIOVO	RASIN 10	TOTAL
AND USE trean 1 (LDR) trean 2 (MDR/Hwy) trean 3 (HDR/Com) trean 3 (HDR/Com) trean 4 (Ind) trean 5 (PI/IR/C) gric 1 (Cwr Crop) gric 1 (Cwr Crop) gric 2 (Row Crop) gric 3 (Grazing) gric 3 (Grazing) corest 1 (Upland) corest 1 (Upland)	(KG/YR) 25.25	1		BANIZ 4	2000	BASIN D	BASIN	2	2.1.2.	3 10	1000
than 1 (LDR) than 2 (MDR/Hwy) than 3 (HDR/Com) than 4 (Ind) than 4 (Ind) than 5 (PI/IR/C) gric 1 (Cwr Crop) gric 2 (Row Crop) gric 3 (Grazing) gric 3 (Grazing) gric 4 (Feedict) the second of the sec	25.25	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)
than 2 (MDR/Hwy) than 3 (HDR/Com) than 4 (Ind) than 4 (Ind) than 5 (PI/IR/C) gric 1 (Cwr Crop) gric 2 (Row Crop) gric 3 (Grazing) gric 4 (Feedlot) the first 1 (Upland) the following 1 (Upland)		715.75	16.25	13.25	33.75	0	0	0		570	004.42
rban 3 (HDR/Com) han 4 (Ind) han 5 (PI/IR/C) gric 1 (Cvr Crop) gric 2 (Row Crop) gric 3 (Grazing) gric 4 (Feedlot) ness 1 (Upland)	9.4	154.8	47.6	25.8	100	1.2	0	0	5	510	230.0
rban 4 (Ind) rban 5 (PI/IR/C) gric 1 (Cwr Crop) gric 2 (Row Crop) gric 3 (Grazing) gric 3 (Grazing) gric 4 (Feedlot) gric 4 (Feedlot) orest 1 (Upland)	0.03	21.6	55.8	0	50.7	26.55	0	0	0	5 (04:00
rban 5 (PI/R/C) gric 1 (Cw Crop) gric 2 (Cw Crop) gric 3 (Grazing) gric 3 (Grazing) gric 4 (Feedlot) gric 4 (Feedlot) orest 1 (Upland)	0	0	0	0	0	O I	0	0	5		
gire 1 (Cvr Crop) gire 2 (Cvr Crop) gire 3 (Grazing) gire 3 (Grazing) gire 4 (Feedlot) rorest 1 (Upland)	51 44	13.52	0	0	16.96	99.52	0	0	0	0	181.44
igne 1 (Car Crop) gric 2 (Row Crop) gric 3 (Grazing) gric 4 (Feeddot) crest 1 (Upland)		0	0	0	0	0	0	0	6	0	0 1
gric 3 (Grazing) gric 3 (Grazing) gric 4 (Feedlot) orest 1 (Upland)		0.00	0	0	19.9	0	0	0	0	0	19.92
gnc 3 (Grazing) gric 4 (Feedlot) orest 1 (Upland) crest 2 (Wetland)		10.04	AR RS	C	72.6	0	0	0	0	0	167.4
ogric 4 (Feedlot) crest 1 (Upland) crest 2 (Wetland)	0 0	0.00	2		1380	10	0	0	Õ	0	1380
orest 1 (Upland)	2	2		7 007	35.45	228.2		0	0	0	1117.45
orest 2 (Wetland)	141.05	125.95	4.02	1.00	2	1007	-	0	0	0	
	0	0	ا د			100			-	0	237.7
Open 1 (Wetland/Lake)	0	0	18.15	123.2	40.5	0.00				-	70.824
pen 2 (Meadow)	18.252	41.964	0	•	0	10.608	9				5R 9947
Open 3 (Excavation)	0.0087	58.986	0	ਰ	0	0		-		:	
Other 1	0	0	0	6	0	0	0	-			
Wher 2	0	0	0	0	0	0	0	0			
Other 3	0	0	0	0	0	0 !	0	• ! • !	1		
		!								c	4521 5
TOTAL	245.4	1180.7	280.9	652.7	1749.7	422.1	0.0	0.0			
							1	:			
							:	:	:		
LOAD GENERATION: BA	SEFLOWN										
	DACIN 1	PACIN 2	PASIN 3	BASIN 4	BASIN 5	BASIN 6	BASIN 7	BASIN 8	BASIN 9	BASIN 10	TOTAL
	(SYC)XI	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	S.
AND COR	101			5.3	13.5	0	0	_	1		
Urban I (LUR)	7	i	47	25.8	100	12	0	•	0		
Ulban 2 (MDD/Com)	900	43.2	-		101.4	53.1	0	-	0		309.36
Judgin 5 (Fig.)		:		0	0	0	3		0		
Orban 4 (IIIu)	32.15	8.45		0	10.6	62.2	٠	-	0	:	113,
Agric 4 (Cyr. Cros)		:		0	0	0		-	0		
Agic (Col Clob)	0	0.0		0	! :			-		0	
Agric 2 (Coaring)	0		31.1	0	48.4	0			0		
Agric 4 (Coodlot)		! 	-	0	46	0			0	1	
Agric 4 (Fedulary)	19 747	17,633	13.496	68.656	4.963	31.948		-	-	-	156.443
Forest 7 (Aprilia)	0	!	1				- ;	0	0		
Open 1 (Metland/lake)	0	0	2.54	17.248	5.642	7			:	. !	33.278
Open 2 (Meadow)	1.638	3.766	0		0	0.952	-		-	219	
Open 3 (Excavation)	0.0007	4.746	0	0		0		:		:	
Other 1:	0		0	- 1		· ·			216	1	
Other 2:	0		0) i		:	5 6		
Other 3:	•		0		0 :	ا : ب : 		<u>.</u>	1		9
Point Source #1	•		:	:	· !						
Point Source #2	0		<u> </u>		3 (:	· ·	:	i !	
Point Source #3		-	0	9			:		; ;		-
	1			247.0	340 6	157	0	0	0	0	1547.

Fig. 1971 Fig. 1972 Fig.							0 11010	DACINI 7	S WIND	PASIN 9	BASIN 10	TOTAL
Column C		BASIN 1	BASIN 2	BASIN 3	BASIN 4	BASIN 5	BASINO	BASIN	(a)	CACAD	(KG/VR)	(KG/YR)
1		(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)		(KG/YR)	KG/TR)	(2)			1608 5
E MASEFLOW TSS !	50.5	14315	32.5	26.5		0	0	9	51	1		
10 10 10 10 10 10 10 10		2 6	207	110	64.5	250	m	0	0	0	0	759
2215 6 44 5	6	6.67	3 1	2		160	88.5	0	0	0	0	515.6
10 10 10 10 10 10 10 10	근 (급	0.1	7./	001	> ·] c		0	0
10 10 10 10 10 10 10 10		0	0	0	5	5	2					1134
Column C	Ī	3215	84.5	0	0	106	622	Ö	• · · · · · · · · · · · · · · · · · · ·	1		
Control Cont						0	0	0	0		٠ ا	
Columbia	!	5	-			aor		0	0	<u> </u>	0	398.4
12 12 12 12 12 12 12 12	_	0	0.4	2		200						837
10 10 10 10 10 10 10 10		0	240.75	233.25		363	5	5			•	0000
Columbia			-		1	3680	0	0	•	ļ		2000
March Marc		5					A 100		0		-	3352.35
10 10 10 10 10 10 10 10		423.15	377.85	289.7		į	2,1	1				0
10 10 10 10 10 10 10 10				0	_	0	0	9				
Second Color Seco		, ,		200	246	80.6	112.1	٥				
Signature Sign	Lake)	0	5	20.0	217							136.2
BASEFLOWTISS SEGAL OF COLUMB SEGAL OF COLU	-	35.1	80.7	0		3	40.4			1		ľ
Colored Colo	1		0000				0	0	_			
BASEN BASIN BASI	(uo	2	200									_
BASEN TS BASIN 2 BASIN 4 BASIN 6 COOR 2 COOR		0	0	-				: :	1	i .		
BASEN 1 BASIN 2 BASIN 3 BASIN 4 BASIN 4 BASIN 4 BASIN 4 BASIN 4 BASIN 5 BASIN 6 BASIN 6 BASIN 7 BASIN 7 BASIN 1 BASIN 2 BASIN 3 BASIN 4 BASIN 4 BASIN 4 BASIN 4 BASIN 5 BASIN 6 BASIN 6 BASIN 6 BASIN 7 BASIN 7 BASIN 8 BASIN 1 BASIN 7 BASIN 8 BASIN 1 BASIN 1 BASIN 7 BASIN 8 BASIN 1 BASI	1		· c				0		1			
BASEN BASIN CONTROL CONTRO		3		1	11111	1				_		_
BASIN 1 BASIN 2 BASIN 2 BASIN 3 BASIN 4 BASI		ō	0	0			5					
BASENLOWTSS SASIN 2 SASIN 3 SASIN 4 SASIN 4 SASIN 6 SASIN 7 SASIN 1 SASIN 1 SASIN 1 SASIN 2 SASIN 3 SASIN 3 SASIN 4 SASIN 4 SASIN 4 SASIN 4 SASIN 4 SASIN 6 SASIN 7 SASIN 9 SASIN 1												
BASEFLOW TSS BASIN 2 BASIN 4 BASIN 5 BASIN 6 BASIN 7 BASIN 1 BASIN 1 BASIN 1 BASIN 1 BASIN 2 BASIN 4 BASIN 6 BASIN 6 BASIN 7 (KGZYR)		1	-	1		0000	1520		0	0	·	16375.0
Colored Colo		854.4	6064.7	2.088	000	277						
BASIN 1 BASIN 2 BASIN 2 BASIN 3 BASIN 4 BASIN 6 BASIN 1 COTT 1 COTT 2 COTT 2 COTT 3 COT												
BASEN 15 BASIN 2 BASIN 3 BASIN 4 BASIN 4 BASIN 4 BASIN 6 BASIN 6 BASIN 9 BASIN 10 TOT (KGYR) (KG			!						1	-	-	
Control Cont	TON: BA	SEFLOW TS	S									
BASIN 1 BASIN 2 BASIN 4 BASIN 6 BASIN 6 BASIN 6 BASIN 6 BASIN 7 BASIN 7 (KGZYR) (KGZ									0 200	DACINIO	DACIN 10	TOTAL
Control Cont	-	RASIN 1	BASIN 2	BASIN 3	BASIN 4	BASIN 5	BASIN 6	BASIN	o Nicya			Ī
Control Cont			10/2/20	(dv CA)	(KC/VR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/ZR)	(KG/YK)	(KG/YK)	2
0,0202 5,726 0,476 0,178 0,178 0,178 0,178 0,178 0,178 0,178 0,178 0,178 0,178 0,178 0,0178 0,0174 0 <th< td=""><td></td><td>(KG/YR)</td><td>בונים בונים בונים</td><td><u></u></td><td><u>}</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.43</td></th<>		(KG/YR)	בונים בונים בונים	<u></u>	<u>}</u>							6.43
0.0004 1.546 0.476 0.286 1 0.012 0		0,202			!	> i	2	: : :				3 388
0.0004 0.288 0.744 0 0.676 0.354 0	- Press	0.094					0.012	:				-
1286		1000	i			0	0	_	_			1
1286	اري ان	0.0004			-						_	_
1296 0.338		0						!				4.536
Colored Colo		1 286	0			0	7					
Colored Colo			!	!		_	_	_		5		
Colored Colo	6	1	:			!	1	:		_	_	
Colored Colo	ğ	-				2 1			i -		-	L
Sector S		0		0			1	1		-	-	0 184
ke) 0.0002 1.076 4.928 19.618 1.418 9.128 0		-							1	5	1	
kej 0.468 1.076 0.0 <						-	oi.	_	<u></u>	ö	0	44.030
(a) 0		2.60 C	1	!	- !					0	0	_
(e) 0	ê	•	_		-				1			9 508
0.0002 1.356 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	d ake)	0		0	4	-		-				
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	0.468							-	51	-	
	1	0000	-		0		_	_	0	5	01	
								_	0	0	0	0
	!	-							0	0	0	0
			!							10	0	0
		•	_		0	0			1	-		21
		-			0	0		0	: :	1	1	
						0	_		0	0	0	
				:	: :		0		0	0	0	0
0 00 00				-						 		
20 100 1111 1424 104			-	_						1		4 1 1 1

ROUTING PATTERN (Which basin flows to which)	ws to which)									
					 !	HROUGH			ONIOVO	DACIN 40
1=YES 0=NO XXX=BLANK	BASIN 1	BASIN 2	BASIN 3	BASIN 4	BASIN 5	BASIN 6	BASIN 7	BASIN 8	BASING	(CITMVR)
	(CU.M/YR)	(CU.M/YR)	(CU.M/YR)	(CU.MYR)	(CU.M/YR)	(CU.MIYK)	(CU.M/YR)	(CO.W.T.R.)	CO.W/ 177	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
INDIVIDUAL BASIN	-	-	-	- !	- :	- (- : 0	- : <		
BASIN 1 OUTPUT	××	0	0	0	0	→ (;) 	- ·	> 0	· C
BASIN 2 OUTPUT	0	×××	0	0	0	0)		0	0 0
BASIN 3 OUTPUT	0	0	××	0	0	0	0	֓֞֞֜֜֜֜֜֝֟֜֓֓֓֓֓֓֓֓֓֓֓֟֜֜֟֜֓֓֓֓֓֜֟֜֜֟֜֜֜֜֟֜֜֜֜֜֟֜֜֜֜֜֜	0	0 0
BASIN 4 OLITPLIT	0	0	0	XXX	0	0	0	0	n	
BASIN & OI ITPI IT		0	0	0	×××	0	0	0	0	O
THE CALL OF THE PARTY.	٥	C	0	0	O	××	0	0	0	0
BASING COLFO) C		C	0	0	0	×	0	0	0
BASIN / OUTPUT			> <		_	0	0	××	0	0
BASIN 8 OUTPUT	اد						C	0	XX	0
BASIN 9 OUTPUT	o	0)						0	XXX
BASIN 10 OUTPUT	0	0	-	>))) 	>)	
		:	:		:		:			
				,						
WATER ROUTING AND ATTENUATION	NO									
	BASIN 1	BASIN 2	BASIN 3	BASIN 4	BASIN 5	BASIN 6	BASIN 7	BASIN 8	BASIN 9	BASIN 10
	CHMYR	∶i≥	(CU.M/YR)	(CU.M/YR)	(CU.M/YR)	(CU.MYR)	(CU.M/YR)	(CU.M/YR)	(CU.M/YR)	(CU.M/YR)
SOURCE	271635 21	7,681	1	<u></u>	1_	495409.8		0		0
INDIVIDUAL BASIIN	7.000.7	3				<u> </u>	!			0
BASIN 1 OUTPUT	i.) C					- - - -
BASIN 2 OUTPUT		\	>>>							!
BASIN 3 OUTPUT			**	^^^	!					
BASIN 4 OUTPUT		0	0.0	***	^^^				0	0
BASIN 5 OUTPUT					\\ \\ \	***	-			
BASIN 6 OUTPUT							XXX			1
BASIN 7 OUTPUT	1							XXX		
BASIN 8 OUTPUT				0				×××	XXX	!
BASIN 9 OUTPUT									\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	***
BASIN 10 OUTPUT		0								
CHAIL ATIVE TOTA!	271635.2	2 568117.3	227281.8	3 838709.4	1 233121.5	495409.8	0			
RASIN ATTENIATION	1.00		1.00	!	: 	<u>.</u>		1.00	7.0	1.0
OUTPUT VOLUME	271635.2	2 568117.3	3 227281.8	838709.4	4 233121.5	495409.8			<u> </u>	0
D. Hit. Obesit for ladin Docin	265548 G	 552748 0	226244	1 859824	2 239914.0	500401.9	:	0	0	0
Reality Check for Indiv. Basin	01007	1	:		:	,				
(Based on std water yield)	_		_							

BASIN 1 BASIN 2 BASIN 3 BASIN 3 BASIN 4 BASIN 5 BASIN 5 BASIN 6 BASIN 7 BASIN 8 BASI	LOAD ROUTING AND ATTENUATION: PHOSPHORUS	N: PHOSPHO	RUS									
Columb		BASIN 1	BASIN 2	BASIN 3	BASIN 4	BASIN 5	BASIN 6	BASIN 7	BASIN 8	BASIN 9	BASIN 10	
NITRATION SUMMARKY: PHOSEN 256 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	
NITRATION SUMMARY: Pi-LOS HORINS NITRATION SUMM	BASIN 1 INDIVIDITAL	17.7	66.2	15.5	32.6	254.9	30.6	0.0	0.0	0.0	0.0	
Conc. Conc	DACIN TOTAL	XXX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
The color The	DAGIN 1 COLL OL		XXX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
The color The	BASIN 2 COLLPOI				0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Color Colo	BASIN S COIT OF	200	010	. !	1	0.0	0.0	0.0	0.0	0.0	0.0	
Tale Color Color	BASIN 4 OUTPUT	200	000	00	. l		0.0	0.0	0.0	0.0	0.0	
Tole Cole	BASIN 5 COLFOI	000		000	0.0		1	0.0	0.0	0.0	0.0	
Color Colo	BASIN 6 OUTPUT	200		0.00	00	0.0	0.0	-	0.0	0.0	0.0	
Table Tabl	BASIN / OUTPUT	0.0		0	0.0	0.0	0.0	0.0	XXX	0.0	0.0	
FATION SUMMARY: PHOSPHORUS Continue of the	BASIN 8 OU I PU I	0.0	000		00	0.0	0.0	0.0	0.0		0.0	i
Table Tabl	BASIN 9 OUTPUI	0.0			0 0	0.0	0.0	0.0	0.0		XXX	
Table Tabl	BASIN 10 OUTPUT	0.0	0.0	2	3	5						
FATION SUMMARY: PHOSPHORUS 124 196 1912 22.9 100 100 1.0	LATOT BURN A TIME	17.7		15.5	32.6	254.9		0.0	0.0		0.0	
FATION SUMMARRY: PHOSHHORUS	CUMULATIVE TOTAL	00 0			090	0.75		1.00	1.00	1	1.00	
NCENTRATION SUMMARY: PHOSPHORUS	BASIN ALLENDALION	200			19.6	191.2		0.0	0.0			
BASIN 3 BASIN 4 BASIN 5 BASIN 6 BASIN 7 BASIN 8 BASIN 9 BASIN 10 TOTO Control Co												
2 BASIN 3 BASIN 4 BASIN 5 BASIN 6 BASIN 7 BASIN 8 BASIN 10 TOT 17 227282 838709 233121 495410 0												
BASIN 3 BASIN 4 BASIN 5 BASIN 6 BASIN 8 BASIN 10 TOT												
2 BASIN 4 BASIN 5 BASIN 6 BASIN 7 BASIN 8 BASIN 9 BASIN 10 TOT 17 227282 838709 233121 495410 0.0	I OAD AND CONCENTRATION SUM	AMARY: PHOS	SPHORUS									
BASIN 1 BASIN 2 BASIN 3 BASIN 4 BASIN 6 BASIN 6 BASIN 7 BASIN 9 BASIN 10 TOTAL 10												
R) 271635 568117 227282 838709 233121 495410 <		BASIN 1	BASIN 2	BASIN 3	BASIN 4	BASIN 5	BASIN 6	BASIN 7	BASIN 8		BASIN	TOTAL
CONC. a) 16.0 52.9 12.4 19.6 191.2 22.9 0.0 <th< td=""><td>CHEDIT (CH M/R)</td><td>271635</td><td></td><td></td><td>838709</td><td>2</td><td>49</td><td></td><td>-</td><td></td><td></td><td></td></th<>	CHEDIT (CH M/R)	271635			838709	2	49		-			
CONC. a) CONGS 0.054 0.023 0.085-1.61 0.047-0.053 #DIV/IOI	Controlly (KG/VR)	16.0			19.6					0		
CONC. a) 0.385-1.61 0.047-0.053 6.035-1.61 0.047-0.053 6.035-1.61 0.047-0.053 6.035-1.61 0.047-0.053 6.035-1.61 0.047-0.053 6.035-1.61 0.0385-1.61 0.047-0.053 6.0385-1.61 0.047-0.053 6.0385-1.61 0.047-0.053 6.0385-1.61 0.047-0.053 6.0385-1.61 0.047-0.053 6.0385-1.61 6.034-1.61 6.0385-1.61 6.045-0.046 6.0385-0.046 6.045-0.046 <td>OUTPUT (MG/L)</td> <td>0.059</td> <td></td> <td></td> <td>0.023</td> <td>0.820</td> <td></td> <td></td> <td>#DIV/Oi</td> <td>#DIV/0i</td> <td>#DIV/0:</td> <td></td>	OUTPUT (MG/L)	0.059			0.023	0.820			#DIV/Oi	#DIV/0i	#DIV/0:	
7 1	REALITY CHECK CONC.					0.385-1.61	0.047-0.053				1	
27-1635 568117 227282 838709 233121 495410 <	(Based on real data)											
The color of the	TERMINAL DISCHARGE?		1	-	-							
YR) 16.0 52.9 12.4 19.6 19.6 19.6 10.059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0050 <t< td=""><td>(1=YES 2=NO)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	(1=YES 2=NO)											
YR) 271635 568117 227282 838709 233121 495410 0								1				
3/NR) 16.0 52.9 12.4 19.6 191.2 22.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	LOAD TO RESOURCE	27163	1		<u>.</u>							2634275
0.059 0.093 0.054 0.023 0.820 0.046 #DIV/0! #DIV/0! #DIV/0! #DIV/0!	PHOSPHORIIS (KG/VR)	16.0	:		:						O .	314.9
	PLOSTHOUSING (MG/L)	0.05						:	#DIV/0i	#DIV/0i	#DIV/0i	0.120

	f								1												TOTAL	1	1		- ::						2624275	7824 0	2.00	1.834
	BASIN 10	(KG/YR)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	XXX	S	0.0	1.00	00				BASIN 10		:		#DIV/0i			-						#DIA/0i
	BASIN 9	(KG/YR)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	XXX	5	2.0	0.0	1 00	0.0				PACINIO	e Nicka	10		io/AIG#		i		:		; ;		11	#DIV/0i
	BASIN 8	(KG/YR)	0.0	0.0	0.0	0.0	0.0	0.0		2.0	XXX	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		0.0	0.0	100	200	0			DACINIO	BASIN 0		0.0	#DIV/0i	1	!' 	• ; • ! • !			1		`	#DIV/0i
	BASIN 7	(KGNR)	0.0	0.0	0.0	0.0	0.0	00			00	0.0	0.0	0.0	0.0	100		0.0			1	PASIN /	14	0.0	i0//IC#			:			:	:		#DIV/0i
	BASIN 6	(KG/YR)	579.4	0.0	0.0	0.0			2 >>>	- 1	0.0	0.0	0.0	0.0	570 A	000	0.00	463.5				BASIN 6	495410	463.5	0.936	0.88-0.96	1	~~				495410	463.5	0.936
	BASIN 5	(KG/YR)	2090.1	0.0	0.0		5 0	2	XX	0.0	0.0	0.0	0.0	0.0	10000	2030.1	0.70	1463.1				BASIN 5	233121	1463.1	6.276	3.6-4.6		-	:			233121	1463.1	6.276
	BASIN 4	(KG/YR)	7697	00		010	>>>	X	0.0	0.0	0.0	0.0	0.0	0.0	7 007	109.7	0.80	615.7				BASIN 4	838709	615.7	0.734					1		838709	615.7	!
	BASIN 3	(KG/YR)	493.7	00		0.0	XX	0.0	0.0	0.0	0.0	0.0	0.0	0.0		493.7	06:0	444.3		GEN		BASIN 3	227282	444.3	1.955	:		-				2		1.955
NITROGEN	DACIN 2	NKC/VE)	17317			XX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		1731./	0.90	1558.6		ARY: NITRO		BASIN 2	568117	15586	2.743				•			568117	1558.6	
ENUATION	4 40	1	240 E	310.3		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		318.5	06.0	286.7		MINOS NOILL		BASIN 1	271635	2867	1 055			1				271635	7867	1.055
LOAD ROUTING AND ATTENUATION: NITROGEN				BASIN 1 INDIVIDUAL	BASIN 1 OUTPUT	BASIN 2 OUTPUT	BASIN 3 OUTPUT	BASIN 4 OUTPUT	BASIN 5 OUTPUT	BASIN 6 OUTPUT	BASIN 7 OUTPUT	BASIN 8 OUTPUT	BASIN 9 OUTPUT	RASIN 10 OUTPUT		CUMULATIVE TOTAL	BASIN ATTENUATION	OUTPUT LOAD		OAD AND CONCENTRATION SUMMARY: NITROGEN			CHAPIT (CH M/YR)	CONTRACTOR OF THE CONTRACTOR O	OUITOI (NOTIN)	DEAL ITY CHECK CONC	(Bosod on roal data)	TEDAMINI DISCHARE	A-VEC 3-NO	(I=1E3 Z=NO)	I DAN TO RESOURCE	WATER (CUM/YR)	NITEOGEN (KG/VB)	NITROGEN (NG/1)

	BASIN 1	BASIN 2	BASIN 3	BASIN 4	BASIN 5	BASIN 6	BASIN 7	BASIN 8	BASIN 9	BASIN 10	
1	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	(KG/YR)	
INDIVIDI IAI	862.0	6080.7	902.8	1833.5	5227.4	1545.1	0.0	0.0	0.0	0.0	
CITPLIT	XXX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
OUTPUT		×××	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	
BASIN 3 OUTPUT	0.0	0.0	XX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
OUTPUT	0.0	0.0	0.0	XX	0.0	0.0	0.0	0.0	0.0	0.0	
BASIN 5 OUTPUT	0.0	0.0	0.0	0.0	××	0.0	0.0	0.0	0.0	0.0	-
RASIN 6 OUTPUT	0.0	0.0	0.0		0.0	××		0.0		0.0	
BASIN 7 OF ITPLIT	0.0	0.0	0.0		0.0	0.0	××	0.0	ļ	0.0	
BASIN 8 OF TPI IT	0.0	0.0	0.0		0.0		0.0	××	0.0	0.0	
DASING OF ITPLIT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ž	0.0	:
BASIN 10 OLITPLIT	0.0	0.0	0.0		0.0		0.0	0.0	0.0	XX	
								10	_	0	
CHIMULATIVE TOTAL	862.0	6080.7	902.8	1833.5	22	7	0:0	0.0		0.0	
BASIN ATTENUATION	0.70	0.70	0.70				1.00	1.00	-:	0.0	
OUTPUT LOAD	603.4	4256.5	632.0	916.8	3136.4	927.1	0.0	0.0	0.0	0.0	
CONCENTR/	LOAD AND CONCENTRATION SUMMARY: SUSPENDED	MARY: SUSP	ENDED SOLIDS	DS							
											10707
	BASIN 1	BASIN 2	BASIN 3	В	BASIN 5	BA	BASIN 7	BASIN 8	BASIN 9	BASIN 10	I SI SI
OUTPUT (CU.M/YR)	271635	1		œ		4	O	0		0 0	
OUTPUT (KG/YR)	603.4		;	916.8	:		0.0	0.0	0	0.0	
OUTPUT MG/L	2.221	7.492			:		#DIV/0i	:0/\lQ#	#DIA/0i	#D/\\O	
REALITY CHECK CONC					5.8-18	0.8-2.5		1			
(Based on real data)									-	-	
TERMINAL DISCHARG	τ	-								-	
(1=YES 2=NO)				:							
LOAD TO RESOURCE			. 1					1		:	2634275
WATER (CU.M/YR)	271635		7	8		4		-			10477
TSS (KG/YR)	603.4	4256.5	632.0		3136.4	927.1	0.0	0.0	Ö		10472.1
		:									

LOADING SUMMARY:				
	WATER	۵	z	TSS
DIRECT LOADS TO LAKE	(CU.M/YR)	(KG/YR)	(KG/YR)	(KG/YR)
ATMOSPHERIC	2246940	59.1	2587.9	13008.6
INTERNAL	0	57.5	628.9	7.7
WATERFOWL	0	13.0	61.8	325.0
WATERSHED LOAD	2634275	314.9	4831.9	10472.1
				A
TOTAL LOAD TO LAKE	4881215	444.6	8110.5	23813.4
(Watershed + direct loads)				
TOTAL INPUT CONC. (MG/L)		0.091	1.662	4.879

THE TERMS SYMBOL TP KG KG L TP TP TP TP TP TP TS TS TS TS	MODELS FOR P PHOSPHORU PHOSPHORU ARE Total Phosphorus C hosphorus Load to Lak hosphorus Load to Lak hosphorus Load to Lak fluent (Inflow) Total Ph fluent (Outlet) Total Ph	VG CONCEN UNITS Ppb kg/yr g P/m2/yr ppb ppb m3/yr m2 m3 m flushings/yr no units	REDICTING CONCENTRATIONS: Current Conditions s units units ppb kg/yr kg/yr From in-lake models be g P/m2/yr kG*1000/A sosphorus ppb From export model bosphorus ppb From data, if available m3/yr From data m3 Volume/area fushings/yr inflow/volume no units Z(F)	VALUE De Predic 197 197 768	Dependent Variable Enter Value (TP out) Enter Value (A) Enter Value (V)
	Settling Velocity Retention Coefficient (flushing rate) Retention MITROGEN	m no units no units	Z(S) ((Vs+13.2)/2)/(((Vs+13.2)/2)+Qs) 1/(1+F^0.5)	0.747	
SYMBOL IN (G C) 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PARAMETER Lake Total Nitrogen Conc. Nitrogen Load to Lake Nitrogen Load to Lake Coefficient of Attenuation, from L Coefficient of Attenuation, from L Coefficient of Attenuation, from L	UNITS PPb kg/yr g N/m2/yr mg N/m2/yr fraction/yr fraction/yr	DERIVATION From in-lake models From export model KG*1000/A KG*100000/A 2.7183^(0.5541(In(E))-0.367) 2.7183^(0.594(In(L2))-6.426) 2.7183^(0.594(In(L2))-4.144)	VALUE To Be Predicted 8110 4.12 4.15 0.54 0.60	Dependent Variable 0 2 5 64 60

IN-I AKE MODELS	IN-I AKE MODELS FOR PREDICTING CONCENTRATIONS: Current Conditions	IONS: C	urrent C	ondition	SI	
THE MODELS					PREDICTED CHL AND WATER CLARITY	۸
THE MODELS	PHOSPHORUS	PRED.	PERMIS.	CRITICAL		
		CONC.	CONC.	CONC.		
NAME	FORMULA	(pdd)	(qdd)	(qdd)	MODEL	Value
Mass Balance	TP=L/(Z(F))*1000	91				
(Maximum Conc.)					Mean Chlorophyll (ug/L)	
Kirchner-Dillon 1975	TP=L(1-Rp)/(Z(F))*1000	23	16	32	Dillon and Rigler 1974	73.7
(K-D)					Jones and Bachmann 1976	0 0
Vollenweider 1975	TP=L/(Z(S+F))*1000	58	40	81	Oglesby and Schaffner 1978	9.0
8					Modified Vollenweider 1982	3.2
l arsen-Mercier 1976	TP=L(1-Rlm)/(Z(F))*1000	40	28	56	"Maximum" Chlorophyll (ug/L)	
(M-1)					Modified Vollenweider (TP) 1982	51.2
Jones-Bachmann 1976	TP=0.84(L)/(Z(0.65+F))*1000	38	26	53	Vollenweider (CHL) 1982	25.7
(J-B)					Modified Jones, Rast and Lee 1979	4.10
					Secchi Transparency (M)	į.
Average of Model Values		40	28	55		1.4
(without mass balance)					Modified Vollenweider 1982 (Max)	3.5
Reality Check Conc.		39				
From Vollenweider 1968			1			
Permis. Load (g/m2/yr	Permis. Load (g/m2/yr) Lp=10^(0.501503(log(Z(F)))-1.0018)	0.16				
Critical Load (g/m2/yr) Lc=2(Cp)) Lc=2(Cp)	0.31				
	NITROGEN					
Mass Balance	TN=L/(Z(F))*1000	1662				
(Maximum Conc.)				:		
Bachmann 1980	TN=L/(Z(C1+F))*1000	899				
Dachmara 1080	TN=! /(7(C2+F))*1000	856	:			
Bachmann 1980	TN=L/(Z(C3+F))*1000	649	;			
						-
Reality Check Conc.		006				

IN-LAKE MODELS FOR PREDICTING CONCENTRATIONS:	TIONS:				
Maximum Loading Reduction Through Detention in Basins		#2, 3, 5 6	and 6.		!
ì				PREDICTED CHL AND WATER CLARITY	<u> </u>
THE MODELS PHOSPHORUS	PRED.	PERMIS.	CRITICAL		
	CONC.	CONC.	CONC.		
NAME	(qdd)	(qdd)	(qdd)	MODEL	Value
TP=1/(Z(F))*1000	64	1			
				Mean Chlorophyll (ug/L)	0
Kirchner-Dillon 1975 TP=L(1-Rp)/(Z(F))*1000	16	16	32	Dillon and Rigier 19/4	10.0
T			1	Jones and Bachmann 1970	13.0
Vollenweider 1975 TP=L/(Z(S+F))*1000	40	39	8/	Modified Vollenweider 1982	13.5
i	28	28	56	"Maximum" Chlorophyll (ug/L)	
Larsen-Mercier 1976 TP=L(1-Rim)/(∠(F))*1000				Modified Vollenweider (TP) 1982	41.7
	7.0	26	53	Vollenweider (CHL) 1982	34.5
Jones-Bachmann 1976 TP=0.84(L)/(∠(0.55+Γ)) Todo				Modified Jones, Rast and Lee 1979	39.1
(J-B)				Secchi Transparency (M)	
	28	76	55		1.8
Average of Model Values	3				3.9
(without mass balance)					
From Vollenweider 1968					
Permis Load (q/m2/vr) Lp=10^(0.501503(log(Z(F)))-1.0018)	0.16				
Critical Load (g/m2/yr) Lc=2(Cp)	0.31				
NITROGEN					
			-		
Mass Balance TN=L/(Z(F)) * 1000	1604				
(Maximum Conc.)					
	868				
	837		1		
	634				
Bachmann 1980 TN=L/(Z(C3+F))*1000	} -				

IN I AKE MODELS FOR	IN I AKE MODELS FOR PREDICTING CONCENTRATIONS: 67% Reduction in Load from basin #5	10NS: 67	7% Red	action ir	Load from Basin #5 reeulor)
IN-LANT MODELO					PREDICTED CHL AND WATER CLARITY	7
THE MODELS	SINOHOSOHO	PRED.	PERMIS.	CRITICAL		
		CONC.	CONC.			
	FORMULA	(qdd)	(qdd)		MODEL	Value
	TD_1 (17/E)(*1000)	89				
	11711				Mean Chlorophyll (ug/L)	
7	4 D-1//7/E1/14/000	17	16	32	Dillon and Rigler 1974	9.7
ก 1975	1 P=L(1-Kp)/(Z(T)) 1000				Jones and Bachmann 1976	11.2
		42	39	79	Oglesby and Schaffner 1978	13.9
er 1975	TP=L/(Z(S+F))*1000	!			Modified Vollenweider 1982	14.3
<u> </u>	0007***********************************	30	28	56	56 "Maximum" Chlorophyll (ug/L)	
ır 1976	1.P=L(1-KIM)/(L(F)) 1000		1		Modified Vollenweider (TP) 1982	44.3
\neg	04/11/1/7/0 EE1E11*1000	28	26	53	<u> </u>	37.1
19/b	1P=0.84(L)/(2(0.03-11)) 1000				Modified Jones, Rast and Lee 1979	42.0
(J-B)					Secchi Transparency (M)	
		29	27	55	55 Oglesby and Schaffner 1978 (Avg)	1.7
Average of Model Values					Modified Vollenweider 1982 (Max)	3.8
(without mass balance)						
From Vollenweider 1968						
Permis. Load (q/m2/yr) Lp=10	Permis. Load (q/m2/yr) Lp=10^(0.501503(log(Z(F)))-1.0018)	0.16				
Critical Load (g/m2/yr) Lc=2(Cp)	(Cp)	0.31	1			
	NITROGEN					
	TAI -1 1/2/EN # 1000	1530				
	2001 117717					
(Maximum Conc.)		-				
I=NT 1980	TN=! /(Z(C1+F))*1000	827				
	TN=1 /(Z(C2+F))*1000	811	1			
	TN=1 //7/C3+F)**1000	615				
Bachmann 1900	1(5(03:1)) 1000					

Marie Mari	S HOUSE MODELS	IN 1 AVE MODELS FOR PREDICTING CONCENTRATIONS:	IONS:				
CLARITY Value (1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1	IN-LANE MODEES	#5 Feedlot to Expected Grazing	Land Exp	ort Valu	les (Apl	prox. 99% Reduction)	
PHOSPHORUS PRED. PERMIS CONC.	Alteration of basin					PREDICTED CHL AND WATER CLARIT	<u>ک</u>
TP=L(1/Z(F))*1000	THE MODELS	PHOSPHORUS	PRED.	_	CRITICAL		
P=L/(Z(F)) '1000			CONC.	CONC.	CONC.		Vehic
TP = L/(Z(F))*1000 56 Mean Chlorophyll (ugl') TP = L/(Z(F))*1000 14 16 32 Dillon and Rigler 1974 16 Modified Vollenweider 1979 17 17 17 17 17 17 17		FORMULA	(qdd)	(qdd)	(qdd)	MODEL	Agine
TP=L(1-Rp)/(Z(F))*1000		TD 1 // Z/E1) * 1000	99				
TP=L(1-Rp)/(Z(F))*1000	1	2001 11 1210				Mean Chlorophyll (ug/L)	1
TP=L/(Z(S+F))*1000	1	22 1/4 0-3//2//5/*4000	14	16	32	Dillon and Rigler 1974	4.7
TP=L/(Z(S+F))*1000 TP=L(1-Rim)/(Z(F))*1000 TP=L(1-Rim)/(Z(F))*1000 TP=L(1-Rim)/(Z(F))*1000 TP=C(1-Rim)/(Z(F))*1000 TP=0.84(1)/(Z(0.65+F))*1000 TP=0.84(1)/(P=L(1-Kp)/(∠(r)) 1000				Jones and Bachmann 1976	3.5
P=L(t(S+F)) 1000		00074112 07277	34	39	78		10.9
TP=L(1-Rlm)/(Z(F))*1000 TP=L(1-Rlm)/(Z(F))*1000 TP=0.84(L)/(Z(0.65+F))*1000 TP=0.84(L)/(Z(0.65+F))*1000 TP=0.84(L)/(Z(0.65+F))*1000 LC=2(CP) TN=L/(Z(F))*1000 TN=L/(Z(C1+F))*1000		TP=L(Z(S+r)) 1000				Modified Vollenweider 1982	11.9
TP=L(1-RIm)V(Z(F))**T000 TP=0.84(L)/(Z(0.65+F))**1000 Z3			25	28	26	"Maximum" Chlorophyll (ug/L)	
TP=0.84(L)/(Z[0.65+F])*1000 TP=0.84(L)/(Z[0.65+F])*1000 TN=L/IZ(F])*1000 TN=L/IZ(CZ+F)*1000		TP=L(1-Rlm)/(Z(F))*1000				Modified Vollenweider (TP)	36.2
TP=0.84(L)/(Z(0.65+F))*T000 TP=0.84(L)/(Z(0.65+F))*T000 Z4			- 23	26	53	<u> </u>	28.8
Secchi Transparency (M) Secchi Transparency (Max) Secchi Tra	_	TP=0.84(L)/(Z(0.65+F))*1000	3				33.1
Lp=10^(0.501503(log(Z(F)))-1.0018)	(J-B)					Secchi Transparency (M)	
Lp=10^(0.501503(log(Z(F)))-1.0018)				70	T T	Octochy and Schaffner 1978 (Avg)	2.0
Lc=2(Cp) Lc=2(Cp) Lc=2(Cp) NITROGEN TN=L/(Z(F))*1000 TN=L/(Z(C1+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C2+F))*1000	Average of Model Values		74	17	3	Modified Vollenweider 1982 (Max)	4.0
Lp=10^(0.501503(log(Z(F)))-1.0018) 0 Lc=2(Cp) 0 Lc=2(Cp) 0 NITROGEN 1 TN=L/(Z(F))*1000 1 TN=L/(Z(C1+F))*1000 TN=L/(Z(C2+F))*1000	(without mass balance)						
Lp=10^(0.501503(log(Z(F)))-1.0018) 0 Lc=2(Cp) 0 Lc=2(Cp)							
Lp=10^(0.501503(log(Z(F)))-1.0018) 0 Lc=2(Cp) 0 TN=L(Z(F))*1000 TN=L(Z(C1+F))*1000 TN=L(Z(C2+F))*1000 TN=L(Z(C2+F))*1000							
N N	From Vollenweider 1968	(2/2/) 4 0040)	0.16				
	Permis. Load (g/m2/yr)	Lp=10v(0.501503(log(∠(r)))-1.0010)	200				
TN=L/(Z(F))*1000 TN=L/(Z(C1+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C3+F))*1000	Critical Load (g/m2/yr)	Lc=2(Cp)	0.0		,		
NITROGEN TN=L/(Z(F))*1000 TN=L/(Z(C1+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C3+F))*1000							
TN=L/(Z(C1+F))*1000 TN=L/(Z(C1+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C3+F))*1000							
TN=L/(Z(F))*1000 TN=L/(Z(C1+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C2+F))*1000							
TN=L/(Z(F))*1000 TN=L/(Z(C1+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C3+F))*1000		NITROGEN					
TN=L/(Z(F))*1000 TN=L/(Z(C1+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C3+F))*1000							
TN=L/(Z(C1+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C3+F))*1000	Mass Balance	TN=L/(Z(F))*1000	1466		-		
TN=L/(Z(C1+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C3+F))*1000	(Maximum Conc.)				-		
TN=U(Z(C1+F))*1000 TN=L/(Z(C2+F))*1000 TN=L/(Z(C3+F))*1000							
TN=L/(Z(C2+F))*1000	Bachmann 1980	TN=L/(Z(C1+F))*1000	79:		1		
TN=1 /(7/C3+F))*1000	Bachmann 1980	TN=L/(Z(C2+F))*1000	78/	~			
	200	TN-1 1/7/C3+E)1*1000	265	<u>~</u>			

•			
k. 1			
,			
~ 1			
•			
· 1			
- 1			
1			
*			
•			
i			
·			
j.			
ı			
:			
i			
,			
i			
,			
•			
,			